test_inference_model_io.py 3.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17 18
import unittest

M
minqiyang 已提交
19
import six
D
dzhwinter 已提交
20
import numpy as np
21
import paddle.fluid.core as core
22

23 24 25 26 27
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.io import save_inference_model, load_inference_model
28 29 30 31 32 33 34 35


class TestBook(unittest.TestCase):
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"

        init_program = Program()
        program = Program()
36 37 38 39 40 41 42 43

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
44
            avg_cost = layers.mean(cost)
45 46 47

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
48 49 50 51 52 53

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

M
minqiyang 已提交
54
        for i in six.moves.xrange(100):
D
dzhwinter 已提交
55
            tensor_x = np.array(
56
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
57
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
58 59 60 61 62 63 64

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
65 66 67 68
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
69

M
minqiyang 已提交
70
        six.moves.reload_module(executor)  # reload to build a new scope
71 72 73 74 75 76 77 78 79 80
        exe = executor.Executor(place)

        [infer_prog, feed_var_names, fetch_vars] = load_inference_model(
            MODEL_DIR, exe)

        outs = exe.run(
            infer_prog,
            feed={feed_var_names[0]: tensor_x,
                  feed_var_names[1]: tensor_y},
            fetch_list=fetch_vars)
D
dzhwinter 已提交
81
        actual = outs[0]
82 83 84

        self.assertEqual(feed_var_names, ["x", "y"])
        self.assertEqual(len(fetch_vars), 1)
85 86
        print("fetch %s" % str(fetch_vars[0]))
        self.assertTrue("scale" in str(fetch_vars[0]))
87 88 89 90 91
        self.assertEqual(expected, actual)


if __name__ == '__main__':
    unittest.main()