interpolate_mkldnn_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::resampling_forward;
26 27
using dnnl::stream;
using framework::DataLayout;
28 29 30 31 32
using platform::GetMKLDNNFormat;
using platform::to_void_cast;

template <typename T = float>
class InterpolateMKLDNNHandler
33
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward> {
34 35
 public:
  InterpolateMKLDNNHandler(const dnnl::algorithm algo,
36 37 38 39
                           const dnnl::engine engine,
                           platform::Place cpu_place,
                           const Tensor* x,
                           Tensor* out)
40 41
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward>(
            engine, cpu_place) {
42
    const auto dst_tz = phi::vectorize(out->dims());
43 44 45 46
    const auto dst_md = memory::desc(
        dst_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);
    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_inference, algo, x->mem_desc(), dst_md);
47 48 49 50 51 52 53 54
  }
};

template <typename T = float>
class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
  std::vector<int> ComputeOutputShape(
      const framework::ExecutionContext& ctx) const {
    const auto* x = ctx.Input<Tensor>("X");
55 56 57 58
    const auto& in_dims = x->dims();

    const framework::DDim in_dhw_dims =
        phi::slice_ddim(in_dims, 2, in_dims.size());
59 60

    std::vector<int> out_dims;
61
    out_dims.reserve(5);
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    if (in_dhw_dims.size() == 1) {
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 2) {
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 3) {
      out_dims.push_back(ctx.Attr<int>("out_d"));
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    }

    auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (list_new_size_tensor.size() > 0) {
      auto new_size = get_new_shape(list_new_size_tensor);
      if (new_size.size() == out_dims.size()) {
        out_dims = new_size;
      }
    } else if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      if (out_size_data.size() == out_dims.size()) {
        out_dims = out_size_data;
      }
    } else {
86 87
      std::vector<float> scale;
      scale.reserve(3);
88 89 90
      auto scale_tensor = ctx.Input<Tensor>("Scale");
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
91 92
        scale.resize(3, scale_data[0]);
        std::copy(scale_data.begin(), scale_data.end(), scale.begin());
93
      } else {
94 95 96 97 98 99 100 101
        std::string op_type = ctx.Type();

        if (op_type.find("v2") == std::string::npos) {  // v1
          scale.push_back(ctx.Attr<float>("scale"));
          scale.push_back(scale[0]);
          scale.push_back(scale[0]);
        } else {  // v2
          std::vector<float> scale_attr = ctx.Attr<std::vector<float>>("scale");
102 103 104 105
          if (scale_attr.size() > 0) {
            scale.resize(3, scale_attr[0]);
            std::copy(scale_attr.begin(), scale_attr.end(), scale.begin());
          }
106
        }
107
      }
108 109
      if (scale.size() == 3 && scale[0] > 0.0f && scale[1] > 0.0f &&
          scale[2] > 0.0f) {
110
        int j = 0;
111
        std::vector<int64_t> in_dhw_vec = phi::vectorize(in_dhw_dims);
112
        std::transform(
113 114 115
            in_dhw_vec.begin(),
            in_dhw_vec.end(),
            out_dims.begin(),
116
            [&](int64_t i) -> int { return static_cast<int>(i * scale[j++]); });
117 118 119
      }
    }

120 121 122 123 124 125 126
    PADDLE_ENFORCE_GT(
        std::all_of(
            out_dims.begin(), out_dims.end(), [](int i) { return i > 0; }),
        0,
        platform::errors::InvalidArgument(
            "out_d, out_h, out_w of Op(interpolate) "
            "should be greater than 0."));
127

128 129
    const std::vector<int64_t> nc_dims = {in_dims[0], in_dims[1]};
    out_dims.insert(out_dims.begin(), nc_dims.begin(), nc_dims.end());
130 131 132 133 134 135 136 137 138 139
    return out_dims;
  }

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
140
    auto* out = ctx.Output<Tensor>("Out");
141

142 143 144 145
    const auto interp_method = ctx.Attr<std::string>("interp_method");
    const dnnl::algorithm algo = (interp_method == "nearest")
                                     ? dnnl::algorithm::resampling_nearest
                                     : dnnl::algorithm::resampling_linear;
146

147
    const auto out_dims_vec = ComputeOutputShape(ctx);
148
    framework::DDim dim_out = phi::make_ddim(out_dims_vec);
149
    out->Resize(dim_out);
150

151 152
    InterpolateMKLDNNHandler<T> handler(
        algo, mkldnn_engine, ctx.GetPlace(), x, out);
153 154

    auto src_memory_p = handler.AcquireSrcMemory(x);
155
    auto dst_memory_p = handler.AcquireDstMemory(out);
156 157 158 159

    auto resampling_prim = handler.AcquireForwardPrimitive();
    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
160
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
161

162 163 164
    resampling_prim->execute(astream, args);
    astream.wait();

165
    out->set_mem_desc(dst_memory_p->get_desc());
166 167 168 169 170 171 172 173
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

174 175 176
REGISTER_OP_KERNEL(nearest_interp,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
177 178 179
                   ops::InterpolateMKLDNNKernel<float>,
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
180 181 182
REGISTER_OP_KERNEL(bilinear_interp,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
183
                   ops::InterpolateMKLDNNKernel<float>);
184

185 186 187
REGISTER_OP_KERNEL(nearest_interp_v2,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
188
                   ops::InterpolateMKLDNNKernel<float>,
189
                   ops::InterpolateMKLDNNKernel<paddle::platform::bfloat16>,
190 191
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
192 193 194
REGISTER_OP_KERNEL(bilinear_interp_v2,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
195
                   ops::InterpolateMKLDNNKernel<float>);