MKLDNNTester.h 3.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <vector>
#include "LayerGradUtil.h"
20
#include "paddle/gserver/layers/MKLDNNBase.h"
21
#include "paddle/gserver/layers/MKLDNNLayer.h"
T
tensor-tang 已提交
22 23 24 25 26 27 28

namespace paddle {

/**
 * @brief test the functionality of Mkldnnlayers
 * refer to paddle original function
 */
29
class MKLDNNTester {
T
tensor-tang 已提交
30
  enum {
T
tensor-tang 已提交
31 32 33
    DNN = 0,  // MKLDNN layer
    REF = 1,  // Reference layer
    NUM = 2,  // Number of total
T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43
  };

protected:
  std::vector<TestConfig> configs_;
  vector<string> layerNames_;
  vector<vector<DataLayerPtr>> dataLayers_;
  vector<vector<Argument>> datas_;
  vector<LayerMap> layerMaps_;
  vector<vector<ParameterPtr>> parameters_;
  vector<LayerPtr> testLayers_;
44
  LayerPtr refLayer_, dnnLayer_;
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57

  /// run some iterations, all the result should pass
  size_t iter_;
  /// whether to print out the details
  bool log_;
  /// vlog level to print the matrix details datas
  int lvl_;
  /// epsilon
  float eps_;
  /// input image size, default 1
  size_t ih_, iw_;

public:
58
  explicit MKLDNNTester(size_t iter = 3, float epsilon = 1e-4) {
T
tensor-tang 已提交
59 60 61
    iter_ = iter;
    eps_ = epsilon;
    log_ = false;
T
tensor-tang 已提交
62
    lvl_ = MKLDNN_ALL;
T
tensor-tang 已提交
63 64
  }

65
  ~MKLDNNTester() {}
T
tensor-tang 已提交
66 67 68 69 70 71 72 73 74 75

public:
  void run(const TestConfig& dnn,
           const TestConfig& ref,
           size_t batchSize,
           size_t inputImgH = 1,
           size_t inputImgW = 1,
           size_t iter = 3,
           float epsilon = 1e-4,
           bool log = false,
T
tensor-tang 已提交
76
           int level = MKLDNN_ALL);
T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  void setLogLevel(int lvl) { lvl_ = lvl; }

private:
  void reset(const TestConfig& dnn, const TestConfig& ref, size_t batchSize);
  void setInputImgSize();
  void runOnce();

  void randomWgtDatas();
  void randomBotDatas();
  void randomTopDiffs();

  void checkForward();
  void checkBackwardData();
  void checkBackwardWgts();

92 93 94 95
  // clear specific layer, clear all when id equals NUM
  void clearWgtDiffs(size_t id = NUM);
  void clearBotDiffs(size_t id = NUM);
  void clearTopDatas(size_t id = NUM);
T
tensor-tang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  void printTopDatas();
  void printMatrix(const MatrixPtr& m);
  void printVector(const VectorPtr& v);

  void saveWgt(const vector<ParameterPtr>& from, vector<VectorPtr>& to);
  void restoreWgt(const vector<VectorPtr>& from, vector<ParameterPtr>& to);

  double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2);
  double compareVector(const VectorPtr& v1, const VectorPtr& v2);

  /**
   * Get delta percent
   * if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
   * max(diff/ref)
T
tensor-tang 已提交
111
   * else return sum(abs(a-b)) / sum(abs(b))
T
tensor-tang 已提交
112
   * The return value should be smaller than eps when passing.
T
tensor-tang 已提交
113 114 115 116 117 118 119 120 121
   */
  double getDelta(const real* d1,
                  const real* d2,
                  size_t len,
                  const float failRate = 1e-3,
                  const float thres = 0.1);
};

}  //  namespace paddle