test_faster_tokenizer_op.py 16.6 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import io
import os
import unittest

import numpy as np
import paddle
import paddle.nn as nn
from paddle.dataset.common import DATA_HOME
from paddle.fluid.framework import core, in_dygraph_mode
from paddle.fluid.layer_helper import LayerHelper

import sys
sys.path.append("./tokenizer")
from tokenizer.bert_tokenizer import BertTokenizer


def to_string_tensor(string_values, name):
    """
    Create the tensor that the value holds the list of string.
    NOTICE: The value will be holded in the cpu place. 
 
    Args:
        string_values(list[string]): The value will be setted to the tensor.
        name(string): The name of the tensor.
    """
    tensor = paddle.Tensor(core.VarDesc.VarType.STRING, [], name,
                           core.VarDesc.VarType.STRINGS, False)
    tensor.value().set_string_list(string_values)
    return tensor


def to_map_tensor(string_dict, name):
    """
    Create the tensor that the value holds the map, the type of key is the string
    and the value is the int. 
    NOTICE: The value will be holded in the cpu place. 
 
    Args:
        string_dict(dict): The value will be setted to the tensor.
        name(string): The name of the tensor.
    """
    tensor = paddle.Tensor(core.VarDesc.VarType.RAW, [], name,
                           core.VarDesc.VarType.VOCAB, True)
    tensor.value().set_vocab(string_dict)
    return tensor


class FasterTokenizer(nn.Layer):
    def __init__(self, vocab_dict):
        super(FasterTokenizer, self).__init__()
        vocab_tensor = to_map_tensor(vocab_dict, "vocab")
        self.register_buffer("vocab", vocab_tensor, persistable=True)

    def forward(self,
                text,
                text_pair=None,
                do_lower_case=True,
                max_seq_len=-1,
                is_split_into_words=False,
                pad_to_max_seq_len=False):
        if in_dygraph_mode():
            input_ids, seg_ids = core.ops.faster_tokenizer(
                self.vocab, text, text_pair, "do_lower_case", do_lower_case,
                "max_seq_len", max_seq_len, "pad_to_max_seq_len",
                pad_to_max_seq_len, "is_split_into_words", is_split_into_words)
            return input_ids, seg_ids

        attrs = {
            "do_lower_case": do_lower_case,
            "max_seq_len": max_seq_len,
            "pad_to_max_seq_len": pad_to_max_seq_len,
            "is_split_into_words": is_split_into_words,
        }
        helper = LayerHelper("faster_tokenizer")
        input_ids = helper.create_variable_for_type_inference(dtype="int64")
        seg_ids = helper.create_variable_for_type_inference(dtype="int64")
        if text_pair is None:
            helper.append_op(
                type='faster_tokenizer',
                inputs={'Vocab': self.vocab,
                        'Text': text},
                outputs={'InputIds': input_ids,
                         'SegmentIds': seg_ids},
                attrs=attrs)
        else:
            helper.append_op(
                type='faster_tokenizer',
                inputs={
                    'Vocab': self.vocab,
                    'Text': text,
                    'TextPair': text_pair
                },
                outputs={'InputIds': input_ids,
                         'SegmentIds': seg_ids},
                attrs=attrs)
        return input_ids, seg_ids


class Predictor(object):
    def __init__(self, model_dir):
        model_file = os.path.join(model_dir, "inference.pdmodel")
        params_file = os.path.join(model_dir, "inference.pdiparams")
        if not os.path.exists(model_file):
            raise ValueError("not find model file path {}".format(model_file))
        if not os.path.exists(params_file):
            raise ValueError("not find params file path {}".format(params_file))
        config = paddle.inference.Config(model_file, params_file)

        # fast_tokenizer op only support cpu.
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(10)

        config.switch_use_feed_fetch_ops(False)
        self.predictor = paddle.inference.create_predictor(config)
        self.input_handles = [
            self.predictor.get_input_handle(name)
            for name in self.predictor.get_input_names()
        ]
        self.output_handles = [
            self.predictor.get_output_handle(name)
            for name in self.predictor.get_output_names()
        ]

    def predict(self, data):

        self.input_handles[0].copy_from_cpu(data)
        self.predictor.run()
        input_ids = self.output_handles[0].copy_to_cpu()
        token_type_ids = self.output_handles[1].copy_to_cpu()
        return input_ids, token_type_ids


class TestBertTokenizerOp(unittest.TestCase):
    def setUp(self):
        self.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
        self.faster_tokenizer = FasterTokenizer(self.bert_tokenizer.vocab)
        self.init_data()
        self.save_path = os.path.join(DATA_HOME, "fast_tokenizer")
        self.param_path = os.path.join(self.save_path, "model.pdparams")
        self.inference_path = os.path.join(self.save_path, "inference")

    def init_data(self):
        self.text = [
            '选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。'
            '酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,'
            '还算丰富。 服务吗,一般'
        ]
        self.text_pair = ['非常不错,服务很好,位于市中心区,交通方便,不过价格也高!']
        self.text_tensor = to_string_tensor(self.text, "text")
        self.text_pair_tensor = to_string_tensor(self.text_pair, "text_pair")
        self.texts = [
            '很好的地理位置,一蹋糊涂的服务,萧条的酒店。',
            ' 选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,'
            '但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般',
            'Test bert tokenizer. The first text.'
        ]
        self.text_pairs = [
            '非常不错,服务很好,位于市中心区,交通方便,不过价格也高!', '房间太小。其他的都一般。。。。。。。。。',
            'Test bert tokenizer. The second text.'
        ]
        self.texts_tensor = to_string_tensor(self.texts, "texts")
        self.text_pairs_tensor = to_string_tensor(self.text_pairs, "text_pairs")

    def test_padding(self):

        self.max_seq_len = 128
        self.pad_to_max_seq_len = True
        self.is_split_into_words = False

        # case 1: only one text (batch_size = 1)
        input_ids, token_type_ids = self.faster_tokenizer(
            text=self.text_tensor,
            do_lower_case=self.bert_tokenizer.do_lower_case,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        input_ids = input_ids.numpy()
        token_type_ids = token_type_ids.numpy()

        encoded_inputs = self.bert_tokenizer(
            text=self.text,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        py_input_ids = np.array(encoded_inputs[0]["input_ids"]).reshape([1, -1])
        py_token_type_ids = np.array(encoded_inputs[0][
            "token_type_ids"]).reshape([1, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

        # case 2: only one text and one text_pair (batch_size = 1)
        input_ids, token_type_ids = self.faster_tokenizer(
            text=self.text_tensor,
            text_pair=self.text_pair_tensor,
            do_lower_case=self.bert_tokenizer.do_lower_case,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        input_ids = input_ids.numpy()
        token_type_ids = token_type_ids.numpy()

        encoded_inputs = self.bert_tokenizer(
            text=self.text,
            text_pair=self.text_pair,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        py_input_ids = np.array(encoded_inputs[0]["input_ids"]).reshape([1, -1])
        py_token_type_ids = np.array(encoded_inputs[0][
            "token_type_ids"]).reshape([1, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

        # case 3: only texts (batch_size = 3)
        input_ids, token_type_ids = self.faster_tokenizer(
            text=self.texts_tensor,
            do_lower_case=self.bert_tokenizer.do_lower_case,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        input_ids = input_ids.numpy()
        token_type_ids = token_type_ids.numpy()

        encoded_inputs = self.bert_tokenizer(
            self.texts,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        py_input_ids = [i["input_ids"] for i in encoded_inputs]
        py_token_type_ids = [i["token_type_ids"] for i in encoded_inputs]
        py_input_ids = np.array(py_input_ids).reshape([3, -1])
        py_token_type_ids = np.array(py_token_type_ids).reshape([3, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

        # case 4: texts and text pairs (batch_size = 3)
        input_ids, token_type_ids = self.faster_tokenizer(
            text=self.texts_tensor,
            text_pair=self.text_pairs_tensor,
            do_lower_case=self.bert_tokenizer.do_lower_case,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        input_ids = input_ids.numpy()
        token_type_ids = token_type_ids.numpy()

        encoded_inputs = self.bert_tokenizer(
            self.texts,
            self.text_pairs,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        py_input_ids = [i["input_ids"] for i in encoded_inputs]
        py_token_type_ids = [i["token_type_ids"] for i in encoded_inputs]
        py_input_ids = np.array(py_input_ids).reshape([3, -1])
        py_token_type_ids = np.array(py_token_type_ids).reshape([3, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

    def test_no_padding(self):
        self.max_seq_len = 128
        self.pad_to_max_seq_len = False
        self.is_split_into_words = False

        # case 1: only one text (batch_size = 1)
        input_ids, token_type_ids = self.faster_tokenizer(
            text=self.text_tensor,
            do_lower_case=self.bert_tokenizer.do_lower_case,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        input_ids = input_ids.numpy()
        token_type_ids = token_type_ids.numpy()

        encoded_inputs = self.bert_tokenizer(
            self.text,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        py_input_ids = np.array(encoded_inputs[0]["input_ids"]).reshape([1, -1])
        py_token_type_ids = np.array(encoded_inputs[0][
            "token_type_ids"]).reshape([1, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

        # case 2: only one text and one text_pair (batch_size = 1)
        input_ids, token_type_ids = self.faster_tokenizer(
            self.text_tensor,
            self.text_pair_tensor,
            do_lower_case=self.bert_tokenizer.do_lower_case,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        input_ids = input_ids.numpy()
        token_type_ids = token_type_ids.numpy()

        encoded_inputs = self.bert_tokenizer(
            self.text,
            self.text_pair,
            max_seq_len=self.max_seq_len,
            pad_to_max_seq_len=self.pad_to_max_seq_len,
            is_split_into_words=self.is_split_into_words)
        py_input_ids = np.array(encoded_inputs[0]["input_ids"]).reshape([1, -1])
        py_token_type_ids = np.array(encoded_inputs[0][
            "token_type_ids"]).reshape([1, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

    def test_is_split_into_words(self):
        self.is_split_into_words = True

        input_ids, token_type_ids = self.faster_tokenizer(
            self.text_tensor,
            do_lower_case=self.bert_tokenizer.do_lower_case,
            is_split_into_words=self.is_split_into_words)
        input_ids = input_ids.numpy()
        token_type_ids = token_type_ids.numpy()
        encoded_inputs = self.bert_tokenizer(
            list(self.text[0]), is_split_into_words=self.is_split_into_words)
        py_input_ids = np.array(encoded_inputs["input_ids"]).reshape([1, -1])
        py_token_type_ids = np.array(encoded_inputs["token_type_ids"]).reshape(
            [1, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

    def test_inference(self):
        if not os.path.exists(self.save_path):
            os.makedirs(self.save_path, exist_ok=True)
        paddle.save(self.faster_tokenizer.state_dict(), self.param_path)
        state_dict = paddle.load(self.param_path)
        self.faster_tokenizer.set_dict(state_dict)

        static_model = paddle.jit.to_static(
            self.faster_tokenizer,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None], dtype=core.VarDesc.VarType.STRINGS),  # texts
            ])
        # Save in static graph model.
        paddle.jit.save(static_model, self.inference_path)
        predictor = Predictor(self.save_path)
        input_ids, token_type_ids = predictor.predict(self.text)

        encoded_inputs = self.bert_tokenizer(self.text)
        py_input_ids = np.array(encoded_inputs[0]["input_ids"]).reshape([1, -1])
        py_token_type_ids = np.array(encoded_inputs[0][
            "token_type_ids"]).reshape([1, -1])
        self.assertTrue(np.allclose(input_ids, py_input_ids, rtol=0, atol=0.01))
        self.assertTrue(
            np.allclose(
                token_type_ids, py_token_type_ids, rtol=0, atol=0.01))

    def test_feed_string_var(self):
        paddle.enable_static()
        x = paddle.static.data(
            name="x", shape=[-1], dtype=core.VarDesc.VarType.STRINGS)
        exe = paddle.static.Executor(paddle.framework.CPUPlace())
        exe.run(paddle.static.default_main_program(), feed={'x': self.text})
        paddle.disable_static()


if __name__ == '__main__':
    unittest.main()