sequence2batch.h 5.4 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19
#pragma once
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"

D
dangqingqing 已提交
20 21 22 23
namespace paddle {
namespace operators {
namespace math {

D
dangqingqing 已提交
24 25 26 27 28 29 30 31 32
template <typename Place, typename T>
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
  void operator()(const platform::DeviceContext& context,
33
                  const framework::LoDTensor& src, const size_t* index,
Y
Yu Yang 已提交
34
                  framework::LoDTensor& dst, bool is_src_index);
D
dangqingqing 已提交
35 36
};

D
dangqingqing 已提交
37 38
template <typename Place, typename T>
class LoDTensor2BatchFunctor {
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
    SeqInfo(int start, int length, int seq_idx)
        : start(start), length(length), seq_idx(seq_idx) {}
    int start;
    int length;
    int seq_idx;
  };

D
dangqingqing 已提交
53 54 55
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& lod_tensor,
Y
Yu Yang 已提交
56
                  framework::LoDTensor& batch, bool is_reverse) const {
57 58
    auto lods = lod_tensor.lod();
    PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
D
dangqingqing 已提交
59 60 61
    auto lod = lods[0];

    std::vector<SeqInfo> seq_info;
62
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
D
dangqingqing 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
      int length = lod[seq_id + 1] - lod[seq_id];
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

    // calculate the start position of each batch
    // (numBatch equal the maxLength of sequences)
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           num_batch = 5,
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
Y
Yu Yang 已提交
78 79 80 81
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
D
dangqingqing 已提交
82 83 84 85 86 87 88
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
    // The batch number represents batch size after rearranging the
    // input LodTensor. It is also the maximum length of input sequence.
89 90

    paddle::framework::LoD batch_lods;
Y
Yu Yang 已提交
91 92
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});
93

D
dangqingqing 已提交
94
    // batch_lods[0] is the start positions for batch LoDTensor
Y
Yu Yang 已提交
95 96
    int num_batch = seq_info[0].length;
    batch_lods[0].resize(static_cast<size_t>(num_batch + 1));
D
dangqingqing 已提交
97
    // batch_lods[1] is the raw index in the input LoDTensor
98
    auto dims = lod_tensor.dims();
Y
Yu Yang 已提交
99
    batch_lods[1].resize(static_cast<size_t>(dims[0]));
D
dangqingqing 已提交
100

101 102
    size_t* batch_starts = batch_lods[0].data();
    size_t* seq2batch_idx = batch_lods[1].data();
D
dangqingqing 已提交
103 104
    batch_starts[0] = 0;
    for (size_t n = 0; n < num_batch; n++) {
Y
Yu Yang 已提交
105
      auto batch_id = static_cast<int>(batch_starts[n]);
D
dangqingqing 已提交
106 107 108 109
      for (size_t i = 0; i < seq_info.size(); ++i) {
        size_t seq_len = seq_info[i].length;
        int start = seq_info[i].start;
        if (n < seq_len) {
D
dangqingqing 已提交
110 111
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
D
dangqingqing 已提交
112 113 114 115 116
          batch_id++;
        } else {
          break;
        }
      }
Y
Yu Yang 已提交
117
      batch_starts[n + 1] = static_cast<size_t>(batch_id);
D
dangqingqing 已提交
118
    }
119
    batch.set_lod(batch_lods);
D
dangqingqing 已提交
120 121

    CopyMatrixRowsFunctor<Place, T> to_batch;
122
    to_batch(context, lod_tensor, seq2batch_idx, batch, true);
D
dangqingqing 已提交
123
  }
D
dangqingqing 已提交
124
};
D
dangqingqing 已提交
125 126

template <typename Place, typename T>
127
class Batch2LoDTensorFunctor {
D
dangqingqing 已提交
128 129 130
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& batch,
131 132 133 134
                  framework::LoDTensor& lod_tensor) const {
    auto in_lod = batch.lod();
    PADDLE_ENFORCE_EQ(in_lod.size(), 2UL,
                      "The LoD size of input `batch` should be 2.");
135 136 137 138 139
    auto out_lod = lod_tensor.lod()[0];
    auto num = out_lod[out_lod.size() - 1];
    PADDLE_ENFORCE_EQ(num, lod_tensor.dims()[0]);
    PADDLE_ENFORCE_EQ(num, in_lod[1].size());
    PADDLE_ENFORCE_EQ(num, batch.dims()[0]);
140
    CopyMatrixRowsFunctor<Place, T> to_seq;
141
    size_t* index = in_lod[1].data();
142 143
    to_seq(context, batch, index, lod_tensor, false);
  }
D
dangqingqing 已提交
144
};
D
dangqingqing 已提交
145 146 147 148

}  // namespace math
}  // namespace operators
}  // namespace paddle