gan_trainer_image.py 9.9 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import random
import numpy
19
import sys,os,gc
W
wangyang59 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
from PIL import Image

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter

import matplotlib.pyplot as plt


def plot2DScatter(data, outputfile):
    # Generate some test data
    x = data[:, 0]
    y = data[:, 1]
    print "The mean vector is %s" % numpy.mean(data, 0)
    print "The std vector is %s" % numpy.std(data, 0)

    heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

    plt.clf()
    plt.scatter(x, y)
    # plt.show()
    plt.savefig(outputfile, bbox_inches='tight')

def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])


    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()
        
def print_parameters(src):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]

    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()

def load_mnist_data(imageFile):
    f = open(imageFile, "rb")
    f.read(16)

    # Define number of samples for train/test
    if "train" in imageFile:
        #n = 60000
        n = 60000
    else:
        n = 10000
    
    data = numpy.zeros((n, 28*28), dtype = "float32")
    
    for i in range(n):
        pixels = []
        for j in range(28 * 28):
            pixels.append(float(ord(f.read(1))) / 255.0)
        data[i, :] = pixels

    f.close()
    return data

97 98 99 100 101 102 103 104 105
def merge(images, size):
    h, w = 28, 28
    img = numpy.zeros((h * size[0], w * size[1]))
    for idx in xrange(size[0] * size[1]):
        i = idx % size[1]
        j = idx // size[1]
        img[j*h:j*h+h, i*w:i*w+w] = (images[idx, :].reshape((h, w)) + 1.0) / 2.0 * 255.0
    return img

W
wangyang59 已提交
106
def saveImages(images, path):
107 108 109
    merged_img = merge(images, [8, 8])
    im = Image.fromarray(merged_img).convert('RGB')
    im.save(path)
W
wangyang59 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    
def get_real_samples(batch_size, data_np):
    return data_np[numpy.random.choice(data_np.shape[0], batch_size, 
                                       replace=False),:]
    
def get_noise(batch_size, noise_dim):
    return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')

def get_fake_samples(generator_machine, batch_size, noise):
    gen_inputs = prepare_generator_data_batch(batch_size, noise)
    gen_inputs.resize(1)
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    return fake_samples

def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)

def prepare_discriminator_data_batch_pos(batch_size, data_np):
    real_samples = get_real_samples(batch_size, data_np)
    labels = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
136 137
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(real_samples))
    inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(labels))
W
wangyang59 已提交
138 139 140 141 142 143 144
    return inputs

def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
    fake_samples = get_fake_samples(generator_machine, batch_size, noise)
    #print fake_samples.shape
    labels = numpy.zeros(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
145 146
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(fake_samples))
    inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(labels))
W
wangyang59 已提交
147 148 149 150 151 152
    return inputs

def prepare_generator_data_batch(batch_size, noise):
    label = numpy.ones(batch_size, dtype='int32')
    #label = numpy.zeros(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
153 154
    inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
    inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(label))
W
wangyang59 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
172
    api.initPaddle('--use_gpu=1', '--dot_period=10', '--log_period=100')
W
wangyang59 已提交
173 174 175 176 177 178 179 180
    gen_conf = parse_config("gan_conf_image.py", "mode=generator_training")
    dis_conf = parse_config("gan_conf_image.py", "mode=discriminator_training")
    generator_conf = parse_config("gan_conf_image.py", "mode=generator")
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
    sample_dim = get_layer_size(dis_conf.model_config, "sample")
    
    data_np = load_mnist_data("./data/raw_data/train-images-idx3-ubyte")
181
    
W
wangyang59 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)

    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)
    
    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)
    
    dis_trainer.startTrain()
    gen_trainer.startTrain()
    
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)
    
    curr_train = "dis"
    curr_strike = 0
209
    MAX_strike = 10
W
wangyang59 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
     
    for train_pass in xrange(100):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
        for i in xrange(1000):
#             data_batch_dis = prepare_discriminator_data_batch(
#                     generator_machine, batch_size, noise_dim, sample_dim)
#             dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
            noise = get_noise(batch_size, noise_dim)
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
                batch_size, data_np)
            dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
                        
            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
                generator_machine, batch_size, noise)
            dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)            
                         
            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
             
            data_batch_gen = prepare_generator_data_batch(
                    batch_size, noise)
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
             
            if i % 100 == 0:
                print "d_pos_loss is %s     d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) 
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)
                             
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1                
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
#                 dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
#                 print "getForwardOutput loss is %s" % dis_loss                
                copy_shared_parameters(dis_training_machine, gen_training_machine)
 
            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)    
                copy_shared_parameters(gen_training_machine, dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)
 
        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
        
        
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
264
        saveImages(fake_samples, "train_pass%s.png" % train_pass)
W
wangyang59 已提交
265 266 267 268 269
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()