dist_model.cc 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

#include "paddle/fluid/distributed/fleet_executor/dist_model.h"
18 19
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
20
#include "paddle/fluid/framework/block_desc.h"
21
#include "paddle/fluid/framework/naive_executor.h"
22
#include "paddle/fluid/framework/op_proto_maker.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"

namespace paddle {
namespace distributed {

namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
    return true;
  }
  return false;
}
}  // namespace

bool DistModel::Init() {
  /* TODO(fleet exe dev): implement this funct */
44 45 46 47 48 49 50 51 52 53
  bool init_method = (!config_.model_dir.empty() || config_.program_desc);
  PADDLE_ENFORCE_EQ(init_method, true,
                    platform::errors::InvalidArgument(
                        "One of model dir or program desc must be provided to "
                        "dist model inference."));
  if (config_.program_desc) {
    PADDLE_ENFORCE_NOT_NULL(
        config_.scope, platform::errors::InvalidArgument(
                           "Scope must be provided to dist model inference if "
                           "program desc has been provided."));
54
  }
55
  if (!PreparePlace()) {
56 57
    return false;
  }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  if (!config_.program_desc) {
    if (config_.scope) {
      LOG(WARNING) << "The provided scope will be ignored if model dir has "
                      "also been provided.";
    }
    if (!PrepareScope()) {
      return false;
    }
    if (!PrepareProgram()) {
      return false;
    }
  } else {
    program_.reset(config_.program_desc);
    scope_.reset(config_.scope);
  }
73 74 75
  if (!PrepareFeedAndFetch()) {
    return false;
  }
76 77 78
  if (!CommInit()) {
    return false;
  }
79 80 81
  if (!PrepareFleetExe()) {
    return false;
  }
82 83 84
  return true;
}

85 86 87 88 89 90 91 92 93 94 95 96
bool DistModel::PreparePlace() {
  if (config_.place == "GPU") {
    place_ = paddle::platform::CUDAPlace(config_.device_id);
  } else if (config_.place == "CPU") {
    place_ = paddle::platform::CPUPlace();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place must be choosen from GPU or CPU, but got %s.", config_.place));
  }
  return true;
}

97
bool DistModel::CommInit() {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  // NOTE (Yuang Liu): The peer endpoints will be obtained with the assumption
  // that mp part is always on inner side and pp part is always on outer side.
  // TODO(fleet exe dev): The peer endpoints could be configured by users.
  PADDLE_ENFORCE_EQ(
      config_.pp_degree * config_.mp_degree, config_.nranks,
      platform::errors::InvalidArgument(
          "The mp_degree multiplies pp_degree is not equal with nranks"));
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  if (config_.mp_degree > 1) {
    PADDLE_ENFORCE_GE(
        config_.mp_ring_id, 0,
        platform::errors::InvalidArgument(
            "mp ring id must be provided for inference under mp."));
    VLOG(3) << "Init comm group for mp.";
    std::vector<std::string> peer_endpoints;
    for (int64_t
             idx = (config_.local_rank / config_.mp_degree) * config_.mp_degree,
             i = 0;
         i < config_.mp_degree; ++idx, ++i) {
      if (config_.trainer_endpoints[idx] == config_.current_endpoint) {
        continue;
      }
      peer_endpoints.emplace_back(config_.trainer_endpoints[idx]);
    }
    // get nranks in a mp group and inner group rank for local rank
    int64_t mp_group_nranks = config_.nranks / config_.pp_degree;
    int64_t mp_group_rank = config_.local_rank % config_.mp_degree;
    InsertCommOp("mp_comm_id", mp_group_nranks, mp_group_rank, peer_endpoints,
                 comm_init_block, config_.mp_ring_id);
  }
  if (config_.pp_degree) {
    // NOTE: the last pp stage doesn't need init pp comm
    VLOG(3) << "Init comm group for pp.";
    if (config_.local_rank - config_.mp_degree >= 0) {
      PADDLE_ENFORCE_EQ(config_.pp_upstream_ring_id >= 0, true,
                        platform::errors::InvalidArgument(
                            "pp upstream ring id must be provided for "
                            "non-first pp stage if inference under pp."));
      // not the first pp stage, has upstream
      std::vector<std::string> upstream_peer_endpoints;
      upstream_peer_endpoints.emplace_back(
          config_.trainer_endpoints[config_.local_rank - config_.mp_degree]);
      InsertCommOp("pp_upstream_comm_id", 2, 1, upstream_peer_endpoints,
                   comm_init_block, config_.pp_upstream_ring_id);
    }

    if (config_.local_rank + config_.mp_degree < config_.nranks) {
      PADDLE_ENFORCE_EQ(config_.pp_downstream_ring_id >= 0, true,
                        platform::errors::InvalidArgument(
                            "pp downstream ring id must be provided for "
                            "non-last pp stage if inference under pp."));
      // not the last pp stage, has downstream
      std::vector<std::string> downstream_peer_endpoints;
      downstream_peer_endpoints.emplace_back(
          config_.trainer_endpoints[config_.local_rank + config_.mp_degree]);
      InsertCommOp("pp_downstream_comm_id", 2, 0, downstream_peer_endpoints,
                   comm_init_block, config_.pp_downstream_ring_id);
    }
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
164 165 166
  return true;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
void DistModel::InsertCommOp(std::string tmp_var_name, int nranks, int rank,
                             const std::vector<std::string> &peer_endpoints,
                             framework::BlockDesc *block, int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  std::string &endpoint = config_.current_endpoint;
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.place == "GPU") {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint", config_.current_endpoint);
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
bool DistModel::PrepareScope() {
  scope_.reset(new framework::Scope());
  return true;
}

bool DistModel::PrepareProgram() {
  if (!LoadProgram()) {
    return false;
  }
  if (!LoadParameters()) {
    return false;
  }
  return true;
}

bool DistModel::LoadProgram() {
  VLOG(3) << "Loading program from " << config_.model_dir;
  PADDLE_ENFORCE_NE(config_.model_dir, "", platform::errors::InvalidArgument(
                                               "Model dir must be provided."));
  std::string model_path = config_.model_dir + ".pdmodel";
  framework::proto::ProgramDesc program_proto;
  std::string pb_content;
  // Read binary
  std::ifstream fin(model_path, std::ios::in | std::ios::binary);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()), true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          model_path));
  fin.seekg(0, std::ios::end);
  pb_content.resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(pb_content.at(0)), pb_content.size());
  fin.close();
  program_proto.ParseFromString(pb_content);
  VLOG(5) << pb_content;
  program_.reset(new framework::ProgramDesc(program_proto));
  return true;
}

bool DistModel::LoadParameters() {
  VLOG(3) << "Loading parameters from " << config_.model_dir;
  PADDLE_ENFORCE_NOT_NULL(program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The program should be loaded first."));
  const auto &global_block = program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();
      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);
      params.push_back(new_var->Name());
281 282
      // NOTE: if the params are stored in different files, 'load' op should be
      // added here
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    }
  }

  std::string param_path = config_.model_dir + ".pdiparams";
  // sort paramlist to have consistent ordering
  std::sort(params.begin(), params.end());
  // append just the load_combine op
  framework::OpDesc *op = load_block->AppendOp();
  op->SetType("load_combine");
  op->SetOutput("Out", params);
  op->SetAttr("file_path", {param_path});
  op->CheckAttrs();

  framework::NaiveExecutor e(place_);
  // Create all persistable variables in root scope to load them from ckpt.
  // Other non-persistable variables will be created in the micro scope
  // managed by fleet executor.
  e.CreateVariables(*program_, 0, true, scope_.get());
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "After loading there are " << scope_->LocalVarNames().size()
          << " vars.";

  return true;
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
bool DistModel::PrepareFleetExe() {
  task_node_.reset(new TaskNode(program_.get(), config_.local_rank));
  if (config_.local_rank - config_.mp_degree >= 0) {
    task_node_->AddUpstreamTask(config_.local_rank - config_.mp_degree);
  }
  if (config_.local_rank + config_.mp_degree < config_.nranks) {
    task_node_->AddDownstreamTask(config_.local_rank + config_.mp_degree);
  }
  task_node_->SetType("Compute");
  task_node_->Init();
  executor_desc_ = FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.local_rank);
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.nranks; ++i) {
    RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.trainer_endpoints[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe.reset(new FleetExecutor(executor_desc_));
  fleet_exe->Init("inference", *(program_.get()), scope_.get(), place_, 1,
                  {task_node_.get()}, id_to_rank);
  return true;
}

bool DistModel::PrepareFeedAndFetch() {
  for (auto *op : program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      VLOG(3) << "feed op with feed var: " << op->Output("Out")[0];
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
      idx_to_feeds_[idx] = op->Output("Out")[0];
    } else if (op->Type() == "fetch") {
      VLOG(3) << "fetch op with fetch var: " << op->Input("X")[0];
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
      }
      fetches_[idx] = op;
      id_to_fetches_[idx] = op->Input("X")[0];
    }
  }
  return true;
}

358 359
void DistModel::Run(const std::vector<paddle::framework::Tensor> &input_data,
                    std::vector<paddle::framework::Tensor> *output_data) {
360 361 362 363 364
  /* TODO(fleet exe dev): implement this funct */
}

}  // namespace distributed
}  // namespace paddle