concat_mkldnn_op.cc 8.6 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16 17
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
33 34 35 36 37 38
    PADDLE_ENFORCE_EQ(
        input->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        input->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));
M
Michal Gallus 已提交
39 40 41
  }
}

A
Adam 已提交
42 43 44
static memory::desc CreateMemDesc(const Tensor& input,
                                  const memory::data_type& dt) {
  const auto dims = paddle::framework::vectorize<int64_t>(input.dims());
M
Michal Gallus 已提交
45
  const auto format = input.format();
A
Adam 已提交
46 47
  auto mem_desc = memory::desc(dims, dt, format);
  return mem_desc;
M
Michal Gallus 已提交
48 49 50 51 52 53
}

static platform::CPUPlace GetCpuPlace(
    const paddle::framework::ExecutionContext& ctx) {
  auto place = ctx.GetPlace();
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
54
                 platform::errors::InvalidArgument("It must use CPUPlace."));
55
  return BOOST_GET_CONST(platform::CPUPlace, place);
M
Michal Gallus 已提交
56 57
}

M
Michal Gallus 已提交
58
static const mkldnn::engine& GetMKLDNNEngine(
59 60 61
    const paddle::framework::ExecutionContext& ctx) {
  auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
  return dev_ctx.GetEngine();
M
Michal Gallus 已提交
62
}
M
Michal Gallus 已提交
63

64 65 66 67 68 69 70 71 72 73
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
  auto end_it = std::copy_if(inputs.begin(), inputs.end(), reduced.begin(),
                             [](const Tensor* t) { return t->numel() > 0; });
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
74 75 76 77 78
template <typename T>
class ConcatPrimitiveFactory {
 public:
  concat::primitive_desc CreateConcatPrimDescriptor(
      const std::vector<const Tensor*> multi_input, Tensor* output,
79 80 81 82
      int concat_axis, const mkldnn::engine& mkldnn_engine,
      const memory::data_type& dt = memory::data_type::f32) {
    CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
    auto dst_desc = CreateDstMemDescriptor(output, dt);
A
Adam 已提交
83
    return concat::primitive_desc(dst_desc, concat_axis, srcs_d, mkldnn_engine);
M
Michal Gallus 已提交
84
  }
M
Michal Gallus 已提交
85

M
Michal Gallus 已提交
86
  concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
A
Adam 已提交
87 88
                               Tensor* output, platform::CPUPlace place,
                               const mkldnn::engine& mkldnn_engine) {
89 90 91 92
    dst_mem = mkldnn::memory(
        concat_pd.dst_desc(), mkldnn_engine,
        output->mutable_data<T>(place, concat_pd.dst_desc().get_size()));

A
Adam 已提交
93
    return concat(concat_pd);
M
Michal Gallus 已提交
94 95
  }

96 97 98 99 100 101 102 103 104 105 106 107 108
  void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
                               void* handler) {
    srcs[i].set_data_handle(handler);
  }

  void SetDstDataHandle(const memory& dst_mem, void* handler) {
    dst_mem.set_data_handle(handler);
  }

  std::vector<memory> GetSrcs() { return srcs; }

  memory GetDst() { return dst_mem.get(); }

M
Michal Gallus 已提交
109
 private:
110 111
  memory::desc CreateDstMemDescriptor(Tensor* output,
                                      const memory::data_type& dt) {
A
Adam 已提交
112
    auto dst_dims = paddle::framework::vectorize<int64_t>(output->dims());
113
    return memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
M
Michal Gallus 已提交
114 115 116
  }

  void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
117 118
                                const mkldnn::engine& mkldnn_engine,
                                const memory::data_type& dt) {
M
Michal Gallus 已提交
119
    for (size_t i = 0; i < multi_input.size(); i++) {
A
Adam 已提交
120 121 122 123
      auto mem_desc = CreateMemDesc(*multi_input[i], dt);
      srcs_d.push_back(mem_desc);
      srcs.push_back(memory(mem_desc, mkldnn_engine,
                            to_void_cast(multi_input[i]->data<T>())));
M
Michal Gallus 已提交
124
    }
M
Michal Gallus 已提交
125 126 127
  }

 private:
A
Adam 已提交
128 129 130
  std::vector<memory::desc> srcs_d;
  std::vector<mkldnn::memory> srcs;
  boost::optional<mkldnn::memory> dst_mem;
131
};
M
Michal Gallus 已提交
132 133 134 135 136

template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
137
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
138 139
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
A
Adam 已提交
140
    int concat_axis = ctx.Attr<int>("axis");
141 142 143 144 145 146 147 148 149
    const int rank = multi_input[0]->dims().size();
    PADDLE_ENFORCE_EQ(
        concat_axis >= -rank && concat_axis < rank, true,
        platform::errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
            -rank, rank, concat_axis));
    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }
150 151 152 153 154 155
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    auto place = GetCpuPlace(ctx);

    memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
M
Michal Gallus 已提交
156 157

    ConcatPrimitiveFactory<T> prim_creator;
158 159
    // If one of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
160
    std::string key = platform::CreateKey(
161
        paddle::framework::vectorize<int>(multi_input[0]->dims()),
162 163
        multi_input.size(), ctx.OutputName("Out"), dt,
        platform::ThreadIDasStr());
A
Adam 已提交
164

165 166 167 168 169 170 171 172 173 174
    const std::string key_prim = key + "@concat_p";
    const std::string key_concat_pd = key + "@concat_pd";
    const std::string key_srcs = key + "@concat_srcs";
    const std::string key_dst = key + "@concat_dst";

    std::shared_ptr<concat::primitive_desc> concat_pd;
    std::shared_ptr<std::vector<memory>> srcs;
    std::shared_ptr<memory> dst_mem;
    auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));

A
Adam 已提交
175
    const auto& mkldnn_engine = dev_ctx.GetEngine();
176 177
    if (concat_p == nullptr) {
      concat_pd = std::make_shared<concat::primitive_desc>(
A
Adam 已提交
178 179 180 181
          prim_creator.CreateConcatPrimDescriptor(
              multi_input, output, concat_axis, mkldnn_engine, dt));
      concat_p = std::make_shared<concat>(prim_creator.CreateConcatPrimitive(
          *concat_pd, output, place, mkldnn_engine));
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
      srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
      dst_mem = std::make_shared<memory>(prim_creator.GetDst());
      dev_ctx.SetBlob(key_prim, concat_p);
      dev_ctx.SetBlob(key_concat_pd, concat_pd);
      dev_ctx.SetBlob(key_srcs, srcs);
      dev_ctx.SetBlob(key_dst, dst_mem);
    } else {
      srcs = std::static_pointer_cast<std::vector<memory>>(
          dev_ctx.GetBlob(key_srcs));
      dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
      concat_pd = std::static_pointer_cast<concat::primitive_desc>(
          dev_ctx.GetBlob(key_concat_pd));
      for (size_t i = 0; i < multi_input.size(); i++) {
        prim_creator.SetSrcDataHandleByIndex(
            *srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
      }
198 199 200
      prim_creator.SetDstDataHandle(
          *dst_mem,
          output->mutable_data<T>(place, concat_pd->dst_desc().get_size()));
201 202
    }

A
Adam 已提交
203 204 205 206 207 208 209 210 211
    mkldnn::stream astream(mkldnn_engine);
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
      args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, (*srcs).at(i)});
    }
    args.insert({MKLDNN_ARG_DST, *dst_mem});

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
212

213
    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
214
    output->set_format(platform::GetMKLDNNFormat(*dst_mem));
M
Michal Gallus 已提交
215 216 217 218 219 220 221 222
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
223
                   ops::ConcatMKLDNNOpKernel<float>,
224
                   ops::ConcatMKLDNNOpKernel<paddle::platform::bfloat16>,
225 226
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);