test_communicator_sync.py 2.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import time
import threading
import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.communicator import Communicator

import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
28
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
T
tangwei12 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64


class TestCommunicator(unittest.TestCase):
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        return avg_cost

    def test_communicator_sync(self):
        role = role_maker.UserDefinedRoleMaker(
            current_id=0,
            role=role_maker.Role.WORKER,
            worker_num=2,
            server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])

        fleet.init(role)
        avg_cost = self.net()

        optimizer = fluid.optimizer.SGD(0.01)

        strategy = StrategyFactory.create_sync_strategy()
        strategy._program_config.wait_port = False
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

        fleet.init_worker()
        time.sleep(10)
        fleet.stop_worker()


if __name__ == '__main__':
    unittest.main()