test_slice_op.py 25.1 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
whs 已提交
17 18
import unittest
import numpy as np
19
import paddle.fluid.core as core
20
from op_test import OpTest
21
import paddle.fluid as fluid
22
import paddle.fluid.layers as layers
23
import paddle
W
whs 已提交
24

25 26
paddle.enable_static()

W
whs 已提交
27

28 29
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
30 31 32 33 34 35 36 37 38
class TestSliceOp(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
39 40
            'ends': self.ends,
            'infer_flags': self.infer_flags
W
whs 已提交
41 42 43
        }

    def config(self):
44
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
45 46 47
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
48
        self.infer_flags = [1, 1, 1]
W
whs 已提交
49 50 51 52 53
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

54 55 56
    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)

W
whs 已提交
57

58 59
class TestCase1(TestSliceOp):
    def config(self):
60
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
61 62 63 64 65 66 67 68 69
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
    def config(self):
70
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
71 72 73 74 75 76 77 78
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
79 80 81 82 83 84 85 86 87 88
class TestSliceOp_decs_dim(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
89
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
90 91 92 93
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
94
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
95 96 97 98
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
99
        self.infer_flags = [1, 1, 1]
H
Hongyu Liu 已提交
100 101 102 103 104 105 106 107 108
        self.out = self.input[1, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


109 110
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
    def config(self):
111
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
112 113 114 115 116 117 118 119 120 121
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[1, 0, 2:4, :]


class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
    def config(self):
122
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
123 124 125 126 127 128 129 130 131 132
        self.starts = [-1, 0, 2]
        self.ends = [1000000, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-1, 0, 2:4, :]


class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
    def config(self):
133
        self.input = np.random.random([3, 4, 5, 7]).astype("float64")
134 135 136 137 138 139 140 141 142 143
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
    def config(self):
144
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
145 146 147 148 149 150 151 152 153 154
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[:, :, :, -1]


class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
    def config(self):
155
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
156 157 158 159 160 161 162 163 164 165 166
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
167 168 169
    def setUp(self):
        self.op_type = "slice"
        self.config()
170 171 172 173

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
174
                (1)).astype('int64') * ele))
175 176

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
177 178 179
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
180
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
181
            'ends': self.ends,
182
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
183 184 185
        }

    def config(self):
186
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
187
        self.starts = [1, 0, 2]
188
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
189
        self.axes = [0, 1, 2]
190 191 192 193
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
194 195 196 197 198 199 200 201

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


202 203 204
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
205 206 207
    def setUp(self):
        self.op_type = "slice"
        self.config()
208 209 210 211 212 213 214 215

        starts_tensor = []
        for index, ele in enumerate(self.starts):
            starts_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
216 217 218
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
219
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
220
            'ends': self.ends,
221
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
222 223 224 225
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
226
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
227 228
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
229
        self.axes = [0, 1, 2]
230 231 232 233 234
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
235 236 237 238 239 240 241 242

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


243 244 245
class TestSliceOp_decs_dim_5_starts_ListTensor(
        TestSliceOp_decs_dim_starts_ListTensor):
    def config(self):
246
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
247 248 249 250 251 252 253 254 255 256 257 258 259
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
H
Hongyu Liu 已提交
260 261 262
    def setUp(self):
        self.op_type = "slice"
        self.config()
263 264 265 266 267
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32")
        }
H
Hongyu Liu 已提交
268 269 270
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
271
            #'starts': self.starts,
H
Hongyu Liu 已提交
272
            'ends': self.ends,
273
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
274 275 276 277
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
278
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
279 280 281 282 283 284
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
285 286 287 288 289 290 291 292

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


293 294 295
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
H
Hongyu Liu 已提交
296 297 298
    def setUp(self):
        self.op_type = "slice"
        self.config()
299 300 301 302

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
303
                self.starts, dtype="int64"),
304 305 306
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
H
Hongyu Liu 已提交
307 308 309
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
310 311 312
            #'starts': self.starts,
            #'ends': self.ends_infer,
            'infer_flags': self.infer_flags
H
Hongyu Liu 已提交
313 314 315
        }

    def config(self):
316
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
317 318 319 320 321
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
322 323 324 325 326 327 328 329

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            "EndsTensor": np.array(
                self.ends, dtype="int32")
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            #'ends': self.ends,
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
352
    def config(self):
353
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
354 355
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
356
        self.axes = [0, 1, 2]
357 358 359 360 361 362 363 364 365
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
366 367


368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
            ends_tensor.append(("y" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            'Input': self.input,
            "StartsTensor": np.array(
                self.starts, dtype="int32"),
            'EndsTensorList': ends_tensor
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            #'starts': self.starts,
            'ends': self.ends_infer,
            'infer_flags': self.infer_flags
        }

W
whs 已提交
394
    def config(self):
395
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
396 397 398 399 400 401 402 403 404 405 406 407 408
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
409 410


411
# Test CUDA float16
412 413
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
414 415 416 417 418 419 420 421 422 423 424 425 426
class TestFP16(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

427 428 429 430 431 432 433
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
434
        self.infer_flags = [1, 1, 1]
435 436 437 438 439 440 441 442 443 444 445 446 447

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['Input'], 'Out', max_relative_error=0.006)


448 449
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
450 451 452 453 454 455 456 457 458 459 460 461 462
class TestFP16_2(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags
        }

463 464
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
465
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
466 467 468 469
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
470
        self.infer_flags = [1]
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ['Input'],
                'Out',
                max_relative_error=0.006,
                numeric_grad_delta=0.5)


487
# Test python API
488
class TestSliceAPI(unittest.TestCase):
489
    def test_1(self):
490
        input = np.random.random([3, 4, 5, 6]).astype("float64")
491
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
492
        minus_3 = fluid.layers.fill_constant([1], "int64", -3)
493 494 495 496 497 498 499 500 501
        starts = fluid.layers.data(
            name='starts', shape=[1, 3], append_batch_size=False)
        ends = fluid.layers.data(
            name='ends', shape=[3], append_batch_size=False)

        x = fluid.layers.data(
            name="x",
            shape=[3, 4, 5, 6],
            append_batch_size=False,
502
            dtype="float64")
503

504 505 506
        # value_int64 is greater than 2147483647 which is the max of int32
        value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)

507
        out_1 = fluid.layers.slice(
508
            x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1])
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        out_2 = fluid.layers.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1])
        out_3 = fluid.layers.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1])
        out_4 = fluid.layers.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)

        out_5 = x[-3:3, 0:100, 2:-1]
        out_6 = x[minus_3:3, 0:100, :, 2:-1]
        out_7 = x[minus_1, 0:100, :, 2:minus_1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
                'ends': np.array([3, 100, -1]).astype("int32")
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])

        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])


538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
class TestSliceApiWithTensor(unittest.TestCase):
    def test_starts_ends_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            a_1 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(
                    starts, dtype='int32'),
                ends=paddle.to_tensor(
                    ends, dtype='int32'))
            a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

            self.assertTrue(np.array_equal(a_1.numpy(), a_2.numpy()))


557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

        self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
        with fluid.program_guard(main_program):
            x = [
                fluid.data(
                    name='x0', shape=self.shape, dtype="float32"), fluid.data(
                        name='x1', shape=self.shape, dtype="float32"),
                fluid.data(
                    name='x2', shape=self.shape, dtype="float32")
            ]

            for each_x in x:
                each_x.stop_gradient = False

            arr = layers.create_array(dtype="float32")
            for i in range(3):
                idx = layers.array_length(arr)
                arr = layers.array_write(x=x[i], i=idx, array=arr)

            if case_num == 1:
                self.sliced_arr = output = arr[0]

            elif case_num == 2:
592 593
                end = fluid.layers.array_length(
                    arr) - 1  # dtype of end is int64
594 595 596
                self.sliced_arr = slice_arr = arr[self.start:end]
                output, _ = fluid.layers.tensor_array_to_tensor(
                    slice_arr, axis=self.axis, use_stack=True)
597 598 599 600 601 602
            elif case_num == 3:
                value_int64 = fluid.layers.fill_constant([1], "int64",
                                                         2147483648)
                self.sliced_arr = slice_arr = arr[self.start:value_int64]
                output, _ = fluid.layers.tensor_array_to_tensor(
                    slice_arr, axis=self.axis, use_stack=True)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

            loss = fluid.layers.reduce_sum(output)
            fluid.backward.append_backward(loss)
            g_vars = list(
                map(main_program.global_block().var,
                    [each_x.name + "@GRAD" for each_x in x]))
            self.out, self.g_x0, self.g_x1, self.g_x2 = \
                self.exe.run(main_program,
                             feed = {'x0': self.data,
                                     'x1': self.data,
                                     'x2': self.data},
                             fetch_list=[output] + g_vars)

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(np.array_equal(self.out, self.data))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.zeros_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))

    def test_case_2(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 2)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(
            np.array_equal(
                self.out, np.stack(
                    [self.data, self.data], axis=self.axis)))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    def test_case_3(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 3)

        self.assertTrue(
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
        self.assertEqual(self.sliced_arr.shape, self.shape)
        self.assertTrue(
            np.array_equal(
                self.out,
                np.stack(
                    [self.data, self.data, self.data], axis=self.axis)))
        self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
        self.assertTrue(np.array_equal(self.g_x2, np.ones_like(self.data)))

658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
class TestImperativeVarBaseGetItem(unittest.TestCase):
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
            sliced = var[:, 10:, :var.shape[1]]  # var.shape[1] is 80L here
            self.assertEqual(sliced.shape, [2, 70, 80])

            sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[:, 1.1:, :var.shape[1]]

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


688 689 690 691 692 693 694 695 696
class TestInferShape(unittest.TestCase):
    def test(self):
        x = paddle.ones(shape=[3, 4, 5])
        x.desc.set_shape([3, -1, 5])
        self.assertEqual(x.shape, (3, -1, 5))

        out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
        self.assertEqual(out0.shape, (3, 3, 5))

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    def test_axis_less_than_zero(self):

        # Using paddle.disable_static will make other unittests fail.
        with fluid.dygraph.guard():
            x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
            x = paddle.to_tensor(x_arr)

            pp_slice = paddle.slice(x, [100, ], [0], [1])
            np_slice = x_arr[:, :, 0:1]
            self.assertTrue(np.array_equal(pp_slice, np_slice))

            pp_slice = paddle.slice(x, [-100, ], [0], [1])
            np_slice = x_arr[0:1]
            self.assertTrue(np.array_equal(pp_slice, np_slice))

            x_arr = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))

            starts = paddle.to_tensor(
                np.reshape(
                    np.array(
                        [], dtype=np.int32), (0, )))
            ends = paddle.to_tensor(
                np.reshape(
                    np.array(
                        [], dtype=np.int32), (0, )))

            with self.assertRaises(ValueError):
                paddle.slice(x, [-1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, 0, starts, ends)

736

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestImperativeCUDAPinnedInput(unittest.TestCase):
    def test_input_cuda_pinned_var(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = core.VarBase(
                value=data,
                name='',
                persistable=False,
                place=fluid.CUDAPinnedPlace(),
                zero_copy=False)
            sliced = var[:, 10:, :var.shape[1]]
            self.assertEqual(sliced.shape, [2, 70, 80])


W
whs 已提交
753 754
if __name__ == '__main__':
    unittest.main()