executor_thread_worker.cc 21.6 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
int DensePullThread::start() {
    _running = true;
    _t = std::thread(&DensePullThread::run, this);
    return 0;
}

void DensePullThread::run() {
    while (_running) {
        _pull_dense_status.resize(0);
        for (auto& t : _dense_variable_name) {
            if (check_update_param(t.first)) {
                auto status = pull_dense(t.first);
                _pull_dense_status.emplace_back(std::move(status));
                reset_thread_version(t.first);
            }
        }
        if (_pull_dense_status.size() != 0) {
            wait_all();
        }

        usleep(_sleep_time_ms * 1000);
    }
}
bool DensePullThread::check_update_param(uint64_t table_id) {
    {
        std::lock_guard<std::mutex> lock(_mutex_for_version);
        auto& version = _training_versions[table_id];
        _current_version[table_id] = *(std::min_element(version.begin(), version.end()));
    }
    if (_current_version[table_id] - _last_versions[table_id] < _threshold) {
        return false;
    }
    return true;
}

void DensePullThread::reset_thread_version(uint64_t table_id) {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    _last_versions[table_id] = _current_version[table_id];
}
std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
    auto& regions = _regions[table_id];
    regions.clear();
    auto& variables = _dense_variable_name[table_id];
    regions.resize(variables.size());

    for (auto i = 0u; i < variables.size(); ++i) {
        auto& t = variables[i];
        Variable* var = _root_scope->FindVar(t);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();

        float* w = tensor->data<float>();
        paddle::ps::Region reg(w, tensor->numel());
        regions[i] = std::move(reg);
    }
    return _ps_client->pull_dense(regions.data(), regions.size(), table_id);
}

void DensePullThread::wait_all() {
    for (auto& t : _pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
            LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
        }
    }

    if (_pull_dense_fail_times > 20) {
        LOG(FATAL) << "pull dense failed times more than 20 times";
        exit(-1);
    }

    _pull_dense_status.resize(0);
}

void DensePullThread::increase_thread_version(int thread_id, uint64_t table_id) {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    _training_versions[table_id][thread_id]++;
}
    
W
Wang Guibao 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  thread_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
                          fetch_var_names.end());
}

172 173 174 175 176
void ExecutorThreadWorker::SetPSlibPtr(std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {

}


W
Wang Guibao 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
  return;
#else
  static unsigned concurrency_cap = std::thread::hardware_concurrency();
  int thread_id = this->thread_id_;

  if (thread_id < concurrency_cap) {
    unsigned proc = thread_id;

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      VLOG(1) << "WARNING: Failed to set thread affinity for thread "
              << thread_id;
    } else {
      CPU_ZERO(&mask);
      if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
          (CPU_ISSET(proc, &mask) == 0)) {
        VLOG(3) << "WARNING: Failed to set thread affinity for thread "
                << thread_id;
      }
    }
  } else {
    VLOG(1) << "WARNING: Failed to set thread affinity for thread "
            << thread_id;
  }
#endif
}

template <typename T>
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
  auto inspect = lod_tensor.data<T>();
  auto element_num = lod_tensor.numel();

  std::ostringstream sstream;
  sstream << var_name << " (element num " << element_num << "): [";
  sstream << inspect[0];
  for (int j = 1; j < element_num; ++j) {
    sstream << " " << inspect[j];
  }
  sstream << "]";

  std::cout << sstream.str() << std::endl;
}

void print_fetch_var(Scope* scope, std::string var_name) {
  const LoDTensor& tensor = scope->FindVar(var_name)->Get<LoDTensor>();

  if (std::type_index(tensor.type()) ==
      std::type_index(typeid(platform::float16))) {
    print_lod_tensor<platform::float16>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(float))) {
    print_lod_tensor<float>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(double))) {
    print_lod_tensor<double>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(int))) {
    print_lod_tensor<int>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int64_t))) {
    print_lod_tensor<int64_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(bool))) {
    print_lod_tensor<bool>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(uint8_t))) {
    print_lod_tensor<uint8_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int16_t))) {
    print_lod_tensor<int16_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int8_t))) {
    print_lod_tensor<int8_t>(var_name, tensor);
  } else {
    VLOG(1) << "print_fetch_var: unrecognized data type:"
            << tensor.type().name();
  }

  return;
}

void ExecutorThreadWorker::TrainFiles() {
  // todo: configurable
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

306
//  AsyncExecutor
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
void AsyncExecutorThreadWorker::TrainFiles() {
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    TrainOneNetwork();

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void AsyncExecutorThreadWorker::SetPSlibPtr(std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
    _pslib_ptr = pslib_ptr;
}
void AsyncExecutorThreadWorker::SetPullDenseThread(std::shared_ptr<DensePullThread> dpt) {
    _pull_dense_thread = dpt;
}
void AsyncExecutorThreadWorker::TrainOneNetwork() {
    PrepareParams();
H
heqiaozhi 已提交
343
    
344 345 346 347
    for (auto& op : ops_) {
        if (op->Type().find("sgd") != std::string::npos) {
            continue;
        }
H
heqiaozhi 已提交
348 349 350 351 352 353 354 355 356
        bool need_skip = false;
        for (auto t = 0u; t < _param_config->skip_op.size(); ++t) {
            if (op->Type().find(_param_config->skip_op[t]) != std::string::npos) { 
                need_skip = true;
                break;
            }
        }
        if (!need_skip) {
            op->Run(*thread_scope_, place_);
H
heqiaozhi 已提交
357
        }
358 359 360 361
    }
    UpdateParams();
}

H
heqiaozhi 已提交
362 363 364

void AsyncExecutorThreadWorker::SetParamConfig(AsyncWorkerParamConfig* param_config) {
    _param_config = param_config;
365 366 367
}

void AsyncExecutorThreadWorker::PrepareParams() {
H
heqiaozhi 已提交
368 369 370 371 372 373 374 375 376
    for (auto table_id: _param_config->sparse_table_id) {
        PullSparse(table_id);
        for (auto& t : _pull_sparse_status) {
            t.wait();
            auto status = t.get();
            if (status != 0) {
                LOG(ERROR) << "pull sparse failed, status[" << status << "]";
                exit(-1);
            }
377 378 379 380
        }
    }
    _pull_sparse_status.resize(0);

H
heqiaozhi 已提交
381 382 383
    for (auto table_id: _param_config->sparse_table_id) {
        FillSparse(table_id);
    }
384 385 386
}

void AsyncExecutorThreadWorker::UpdateParams() {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  for (auto i : _param_config->sparse_table_id) {
    PushSparse(i);
  }
  for (auto i : _param_config->dense_table_id) {
    PushDense(i);
  }
  int32_t tmp_push_dense_wait_times = -1;
  int32_t tmp_push_sparse_wait_times = -1;
  static uint32_t push_dense_wait_times =
      static_cast<uint32_t>(tmp_push_dense_wait_times);
  static uint32_t push_sparse_wait_times =
      static_cast<uint32_t>(tmp_push_sparse_wait_times);

  if (_push_dense_status.size() >= push_dense_wait_times) {
    for (auto& t : _push_dense_status) {
      t.wait();
403
    }
404 405 406 407 408 409 410 411
    _push_dense_status.resize(0);
  }
  if (tmp_push_dense_wait_times == -1) {
    _push_dense_status.resize(0);
  }
  if (_push_sparse_status.size() >= push_sparse_wait_times) {
    for (auto& t : _push_sparse_status) {
      t.wait();
H
heqiaozhi 已提交
412
    }
413 414 415 416 417 418 419 420
    _push_sparse_status.resize(0);
  }
  if (tmp_push_sparse_wait_times == -1) {
    _push_sparse_status.resize(0);
  }
  for (auto dense_table_id : _param_config->dense_table_id) {
    _pull_dense_thread->increase_thread_version(thread_id_, dense_table_id);
  }
421 422 423 424
}

void AsyncExecutorThreadWorker::PushDense(int table_id) {
    std::vector<paddle::ps::Region> regions;
H
heqiaozhi 已提交
425
    for (auto& t : _param_config->dense_gradient_variable_name[table_id]) {
426 427 428 429 430 431 432 433 434
        Variable* var = thread_scope_->FindVar(t);
        CHECK(var != nullptr) << "var[" << t << "] not found";
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int count = tensor->numel();
        float* g = tensor->data<float>();
        paddle::ps::Region reg(g, count);
        regions.emplace_back(std::move(reg));
    }

435 436
    auto status = _pslib_ptr->_worker_ptr->push_dense(
        regions.data(), regions.size(), table_id);
437 438 439 440 441 442 443 444
    _push_dense_status.push_back(std::move(status));

}

void AsyncExecutorThreadWorker::PullSparse(int table_id) {

    auto& features = _features[table_id];
    auto& feature_value = _feature_value[table_id];
445
    auto fea_dim = _param_config->fea_dim;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    // slot id starts from 1
    features.clear();
    features.resize(0);
    features.reserve(MAX_FEASIGN_NUM);
    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
    // slot_idx = 0 is label TODO
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int64_t* ids = tensor->data<int64_t>();
        int len = tensor->numel();
        for (auto i = 0u; i < len; ++i) {
            //todo: current trick - filter feasign=use_slot_mod(bug: datafeed fill use_slot_mod for empty slot)
            if (ids[i] == 0u) {
                continue;
            }
            features.push_back(static_cast<uint64_t>(ids[i]));
        }
    }
    check_pull_push_memory(features, feature_value, fea_dim);

    std::vector<float*> pull_feature_value;
    for (auto i = 0u; i < features.size(); ++i) {
        pull_feature_value.push_back(feature_value[i].data());
    }
H
heqiaozhi 已提交
471 472
    for (int i = 0; i < features.size(); ++i) {
    }
473 474 475 476 477 478 479
    auto status = _pslib_ptr->_worker_ptr->pull_sparse(
            pull_feature_value.data(), table_id, features.data(), features.size());
    _pull_sparse_status.push_back(std::move(status));

    auto& push_g = _feature_push_value[table_id];
    check_pull_push_memory(features, push_g, fea_dim);

480
    collect_feasign_info(table_id); 
481 482 483
}

void AsyncExecutorThreadWorker::FillSparse(int table_id) {
484 485
    auto slot_dim = _param_config->slot_dim; 
    auto fea_dim = _param_config->fea_dim; 
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    auto& features = _features[table_id];
    auto& fea_value = _feature_value[table_id];

    CHECK(features.size() > 0) << "feature size check failed";

    auto fea_idx = 0u;

    std::vector<float> init_value(fea_dim);

    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
    // slot_idx = 0 is label TODO
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int64_t* ids = tensor->data<int64_t>();
        int len = tensor->numel();
H
heqiaozhi 已提交
502
        Variable* var_emb = thread_scope_->FindVar(_param_config->slot_input_vec[table_id][slot_idx - 1]);
503
        LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
504 505 506 507 508 509
        float* ptr = tensor_emb->mutable_data<float>({len, slot_dim}, platform::CPUPlace());
        memset(ptr, 0, sizeof(float) * len * slot_dim);
        auto& tensor_lod = tensor->lod()[0];
        
        LoD data_lod{tensor_lod};
        tensor_emb->set_lod(data_lod);
510 511

        for (auto index = 0u; index < len; ++index){
512 513 514 515 516 517
            if (ids[index] == 0u) {
                memcpy(ptr + slot_dim * index, init_value.data() + 2, sizeof(float) * slot_dim);
                continue;
            }
            memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2, sizeof(float) * slot_dim);
            fea_idx++;
518 519 520 521 522
        }
    }
}

void AsyncExecutorThreadWorker::PushSparse(int table_id) {
523 524
    auto slot_dim = _param_config->slot_dim; 
    auto fea_dim = _param_config->fea_dim;
H
heqiaozhi 已提交
525
    auto& features = _features[table_id]; 
526
    CHECK(features.size() < 1000000) << "features size is too big, may be wrong:" << features.size();
H
heqiaozhi 已提交
527
    auto& push_g = _feature_push_value[table_id]; 
528
    check_pull_push_memory(features, push_g, fea_dim);
H
heqiaozhi 已提交
529
    CHECK(push_g.size() == features.size() + 1) << "push_g size:" << push_g.size() << " features size:" << features.size();
530
    uint64_t fea_idx = 0u;
H
heqiaozhi 已提交
531
    auto& fea_info = _fea_info[table_id]; 
532
    int offset = 2;
533
    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
534
    // slot_idx = 0 is label 
535
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
H
heqiaozhi 已提交
536 537 538
        if (_param_config->slot_alias_to_table.find(feed_vec[slot_idx]) == _param_config->slot_alias_to_table.end()) { 
            LOG(ERROR) << "ERROR slot_idx:" << slot_idx << " name:" << feed_vec[slot_idx];
        } else if (_param_config->slot_alias_to_table[feed_vec[slot_idx]] != table_id) {
539 540
            continue;
        }
H
heqiaozhi 已提交
541 542
        Variable* g_var = thread_scope_->FindVar(_param_config->gradient_var[table_id][slot_idx - 1]); 
        CHECK(g_var != nullptr) << "var[" << _param_config->gradient_var[table_id][slot_idx - 1] << "] not found";
543
        LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
544 545 546
        if (g_tensor == NULL) {
            LOG(ERROR) << "var[" << _param_config->gradient_var[table_id][slot_idx - 1] << "] not found";
            exit(-1);
547
        }
H
heqiaozhi 已提交
548
        float* g = g_tensor->data<float>();
549 550

        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
H
heqiaozhi 已提交
551
        CHECK(var != nullptr) << "var[" << feed_vec[slot_idx] << "] not found";
552
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
553 554 555 556
        if (tensor == NULL) {
            LOG(ERROR) << "var[" << feed_vec[slot_idx] << "] not found";
            exit(-1);
        }
H
heqiaozhi 已提交
557 558 559
        int len = tensor->numel();
        CHECK(slot_dim * len == g_tensor->numel()) << "len:" << len << " g_numel:" << g_tensor->numel();
        CHECK(len == tensor->numel()) << "len:" << len << "t_numel:" << tensor->numel();
560 561 562 563 564 565 566 567
        int64_t* ids = tensor->data<int64_t>();
        for (auto id_idx = 0u; id_idx < len; ++id_idx){
            if (ids[id_idx] == 0) {
                g += slot_dim;
                continue;
            }
            memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
            push_g[fea_idx][0] = 1.0f;
H
heqiaozhi 已提交
568
            CHECK(fea_idx < fea_info.size()) << "fea_idx:" << fea_idx << " size:" << fea_info.size();
569 570 571 572 573
            push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
            g += slot_dim;
            fea_idx++;
        }
    }
H
heqiaozhi 已提交
574
    CHECK(fea_idx == features.size()) << "fea_idx:" << fea_idx << " features size:" << features.size();
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    CHECK(features.size() > 0);

    std::vector<float*> push_g_vec;
    for (auto i = 0u; i < features.size(); ++i) {
        push_g_vec.push_back(push_g[i].data());
    }
    auto status = _pslib_ptr->_worker_ptr->push_sparse(
            table_id, features.data(), (const float**)push_g_vec.data(), features.size());
    _push_sparse_status.push_back(std::move(status));
}

void AsyncExecutorThreadWorker::collect_feasign_info(
        int table_id) {
    auto& fea_info = _fea_info[table_id];
    auto& feature = _features[table_id];
    fea_info.resize(feature.size());

    const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
    Variable* var = thread_scope_->FindVar(feed_vec[0]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* label = tensor->data<int64_t>();

    int global_index = 0;
    for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
        Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        int64_t* ids = tensor->data<int64_t>();
   
        int fea_idx = 0;
        for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
            for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
                if (ids[fea_idx] == 0u) {
                    continue;
                }
                FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};

                fea_info[global_index++] = std::move(info);
            }
        }
    }
    CHECK(global_index == feature.size()) << "expect fea info size:" << feature.size()
        << " real:" << global_index;
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
        std::vector<uint64_t>& features,
        std::vector<std::vector<float>>& push_g,
        int dim) {
    push_g.resize(features.size() + 1);
    for (auto& t : push_g) {
        t.resize(dim);
    }
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
        std::vector<uint64_t>& features,
        std::vector<float*>& push_g,
        int dim) {
    if (features.size() > push_g.size()) {
        push_g.reserve(features.size() + 1);
        auto size = features.size() - push_g.size() + 1;
        for (auto i = 0u; i < size; ++i) {
            float* ptr = new float[dim];
            push_g.push_back(ptr);
        }
    }
}

W
Wang Guibao 已提交
643 644
}  // einit_modelnd namespace framework
}  // end namespace paddle