nce_op.h 15.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
W
wanghaoshuang 已提交
52
  // for unitest
W
wanghaoshuang 已提交
53 54
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
55 56 57

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
58
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
59
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
60 61

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
62
  int index = 0;
63
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
64 65
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
66
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
67
    }
W
wanghaoshuang 已提交
68 69
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
70 71 72 73
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
74
        // TODO(wanghaoshuang): support more distribution sampling
75
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
76
      }
W
wanghaoshuang 已提交
77 78 79 80
    }
  }
}

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82 83
class NCEKernel : public framework::OpKernel<T> {
 public:
84
  void Compute(const framework::ExecutionContext &context) const override {
85 86 87 88 89
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

90
    Sampler *sampler;
91 92 93 94 95 96 97 98 99 100
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
101 102 103 104 105 106 107 108 109 110 111 112 113
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
114 115 116 117 118 119
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
120
    auto sample_labels = context.Output<Tensor>("SampleLabels");
121
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
122 123 124 125 126

    for (int x = 0; x < sample_labels->numel(); x++) {
      PADDLE_ENFORCE_GE(sample_labels_data[x], 0, "nce sample label %d", x);
    }

W
wanghaoshuang 已提交
127
    auto sample_out = context.Output<Tensor>("SampleLogits");
128
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
129 130
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
131
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
132 133 134
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
135
    auto out = context.Output<Tensor>("Cost");
136
    T *out_data = out->mutable_data<T>(context.GetPlace());
137
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
138 139 140
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
141 142
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
143
    // forward bias
W
wanghaoshuang 已提交
144
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
145
    if (bias != nullptr) {
146
      const T *bias_data = bias->data<T>();
147
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
148 149 150
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
151
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
152 153 154 155
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
156
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
157 158

    // for remote prefetch
159
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
T
tangwei12 已提交
160 161
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

162
    if (remote_prefetch && !epmap.empty()) {
T
tangwei12 已提交
163 164 165 166 167 168 169 170 171 172 173
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

T
tangwei12 已提交
174 175
      framework::Scope &local_scope = context.scope().NewScope();

Q
Qiao Longfei 已提交
176 177
      auto height_sections =
          context.Attr<std::vector<int64_t>>("height_sections");
T
tangwei12 已提交
178 179
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
180
      auto *ids = local_scope.Var("Ids@Prefetch");
T
tangwei12 已提交
181 182 183 184 185 186 187 188
      auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
      x_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
          context.GetPlace());
      // copy.
      std::memcpy(x_tensor->data<int64_t>(), labels.data(),
                  labels.size() * sizeof(int64_t));

T
tangwei12 已提交
189 190 191 192 193 194 195
      std::vector<int> w_dims = paddle::framework::vectorize2int(
          context.Input<Tensor>("Weight")->dims());
      w_dims[0] = static_cast<int>(labels.size());

      auto *w_tensor = local_scope.Var("Weight@Prefetch")
                           ->GetMutable<framework::LoDTensor>();
      w_tensor->Resize(framework::make_ddim(w_dims));
T
tangwei12 已提交
196 197

#ifdef PADDLE_WITH_DISTRIBUTE
198
      auto weight = context.Inputs("Weight").front();
T
tangwei12 已提交
199
      operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
200 201
                                       weight, false, table_names, epmap,
                                       height_sections, context, local_scope);
T
tangwei12 已提交
202 203 204 205
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
T
tangwei12 已提交
206
#endif
T
tangwei12 已提交
207

T
tangwei12 已提交
208
      auto weight_mat = EigenMatrix<T>::From(
T
tangwei12 已提交
209
          (local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
T
tangwei12 已提交
210 211 212 213 214 215 216 217 218 219 220 221
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
222
      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
223 224 225 226 227 228 229 230 231 232 233
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
234
    }
T
tangwei12 已提交
235

W
wanghaoshuang 已提交
236
    // forward cost
237
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
238 239
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
240 241 242 243 244
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
245 246 247
        out_data[i] += w * cost;
      }
    }
248
    delete sampler;
W
wanghaoshuang 已提交
249 250 251
  }
};

Q
QI JUN 已提交
252
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
253 254
class NCEGradKernel : public framework::OpKernel<T> {
 public:
255
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
256
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
257
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
258 259
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
260
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
261
    auto sample_labels = context.Input<Tensor>("SampleLabels");
262
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
263
    auto sample_weight = context.Input<Tensor>("SampleWeight");
264
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
265 266 267
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
268 269
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
270 271 272 273
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
274 275 276

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
277
    Sampler *sampler;
278 279 280 281 282 283 284 285 286 287
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
288 289 290 291 292 293 294 295 296 297 298 299 300
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
301 302 303 304 305 306
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
307
    Tensor sample_grad;  // tmp tensor
308
    T *sample_grad_data =
W
wanghaoshuang 已提交
309 310
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
311
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
312 313 314
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
315
      T o = sample_out_data[i];
316 317
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
318 319
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
320
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
321
    }
322

323 324 325 326 327 328 329 330 331 332
    // get d_bias
    auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
    if (d_bias != nullptr) {
      T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
      }
    }

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
351
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
352
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
353
      }
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
382
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
383
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
384
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
385
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
386 387 388
            sample_grad_data[i];
      }
    }
389

W
wanghaoshuang 已提交
390
    // get d_x
W
wanghaoshuang 已提交
391
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
392
    if (d_x != nullptr) {
393
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
394
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
395
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
396
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
397
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
398
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
399 400 401
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
402

403
    delete sampler;
W
wanghaoshuang 已提交
404 405 406 407
  }
};
}  // namespace operators
}  // namespace paddle