test_imperative_layer_apply.py 2.9 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle
import paddle.nn as nn
import paddle.fluid as fluid

import numpy as np


class LeNetDygraph(fluid.dygraph.Layer):
    def __init__(self, num_classes=10, classifier_activation='softmax'):
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = nn.Sequential(
31
            nn.Conv2d(
L
LielinJiang 已提交
32 33 34
                1, 6, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.Pool2D(2, 'max', 2),
35
            nn.Conv2d(
L
LielinJiang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
                6, 16, 5, stride=1, padding=0),
            nn.ReLU(),
            nn.Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = nn.Sequential(
                nn.Linear(400, 120),
                nn.Linear(120, 84),
                nn.Linear(
                    84, 10, act=classifier_activation))

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


def init_weights(layer):
    if type(layer) == nn.Linear:
        new_weight = paddle.fill_constant(
            layer.weight.shape, layer.weight.dtype, value=0.9)
        layer.weight.set_value(new_weight)
        new_bias = paddle.fill_constant(
            layer.bias.shape, layer.bias.dtype, value=-0.1)
        layer.bias.set_value(new_bias)
64
    elif type(layer) == nn.Conv2d:
L
LielinJiang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        new_weight = paddle.fill_constant(
            layer.weight.shape, layer.weight.dtype, value=0.7)
        layer.weight.set_value(new_weight)
        new_bias = paddle.fill_constant(
            layer.bias.shape, layer.bias.dtype, value=-0.2)
        layer.bias.set_value(new_bias)


class TestLayerApply(unittest.TestCase):
    def test_apply_init_weight(self):
        with fluid.dygraph.guard():
            net = LeNetDygraph()

            net.apply(init_weights)

            for layer in net.sublayers():
                if type(layer) == nn.Linear:
                    np.testing.assert_allclose(layer.weight.numpy(), 0.9)
                    np.testing.assert_allclose(layer.bias.numpy(), -0.1)
84
                elif type(layer) == nn.Conv2d:
L
LielinJiang 已提交
85 86 87 88 89 90
                    np.testing.assert_allclose(layer.weight.numpy(), 0.7)
                    np.testing.assert_allclose(layer.bias.numpy(), -0.2)


if __name__ == '__main__':
    unittest.main()