api_train.py 6.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
"""
A very basic example for how to use current Raw SWIG API to train mnist network.

Current implementation uses Raw SWIG, which means the API call is directly \
passed to C++ side of Paddle.

The user api could be simpler and carefully designed.
"""
Y
Yu Yang 已提交
9
import py_paddle.swig_paddle as api
Y
Yu Yang 已提交
10 11
from py_paddle import DataProviderConverter
import paddle.trainer.PyDataProvider2 as dp
Y
Yu Yang 已提交
12 13
import paddle.trainer.config_parser
import numpy as np
Y
Yu Yang 已提交
14
import random
Y
Yu Yang 已提交
15
from mnist_util import read_from_mnist
Y
Yu Yang 已提交
16 17 18 19 20 21


def init_parameter(network):
    assert isinstance(network, api.GradientMachine)
    for each_param in network.getParameters():
        assert isinstance(each_param, api.Parameter)
Y
Yu Yang 已提交
22 23 24
        array_size = len(each_param)
        array = np.random.uniform(-1.0, 1.0, array_size).astype('float32')
        each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array)
Y
Yu Yang 已提交
25 26


Y
Yu Yang 已提交
27 28 29 30 31 32 33 34 35 36 37
def generator_to_batch(generator, batch_size):
    ret_val = list()
    for each_item in generator:
        ret_val.append(each_item)
        if len(ret_val) == batch_size:
            yield ret_val
            ret_val = list()
    if len(ret_val) != 0:
        yield ret_val


Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47 48 49
class BatchPool(object):
    def __init__(self, generator, batch_size):
        self.data = list(generator)
        self.batch_size = batch_size

    def __call__(self):
        random.shuffle(self.data)
        for offset in xrange(0, len(self.data), self.batch_size):
            limit = min(offset + self.batch_size, len(self.data))
            yield self.data[offset:limit]


Y
Yu Yang 已提交
50 51 52 53 54
def input_order_converter(generator):
    for each_item in generator:
        yield each_item['pixel'], each_item['label']


Y
Yu Yang 已提交
55
def main():
Y
Yu Yang 已提交
56
    api.initPaddle("-use_gpu=false", "-trainer_count=4")  # use 4 cpu cores
Y
Yu Yang 已提交
57 58 59
    config = paddle.trainer.config_parser.parse_config(
        'simple_mnist_network.py', '')

Y
Yu Yang 已提交
60 61 62 63
    # get enable_types for each optimizer.
    # enable_types = [value, gradient, momentum, etc]
    # For each optimizer(SGD, Adam), GradientMachine should enable different
    # buffers.
Y
Yu Yang 已提交
64 65 66 67
    opt_config = api.OptimizationConfig.createFromProto(config.opt_config)
    _temp_optimizer_ = api.ParameterOptimizer.create(opt_config)
    enable_types = _temp_optimizer_.getParameterTypes()

Y
Yu Yang 已提交
68
    # Create Simple Gradient Machine.
Y
Yu Yang 已提交
69 70
    m = api.GradientMachine.createFromConfigProto(
        config.model_config, api.CREATE_MODE_NORMAL, enable_types)
Y
Yu Yang 已提交
71 72 73

    # This type check is not useful. Only enable type hint in IDE.
    # Such as PyCharm
Y
Yu Yang 已提交
74
    assert isinstance(m, api.GradientMachine)
Y
Yu Yang 已提交
75 76

    # Initialize Parameter by numpy.
Y
Yu Yang 已提交
77
    init_parameter(network=m)
Y
Yu Yang 已提交
78 79 80 81

    # Create Local Updater. Local means not run in cluster.
    # For a cluster training, here we can change to createRemoteUpdater
    # in future.
Y
Yu Yang 已提交
82 83
    updater = api.ParameterUpdater.createLocalUpdater(opt_config)
    assert isinstance(updater, api.ParameterUpdater)
Y
Yu Yang 已提交
84 85

    # Initialize ParameterUpdater.
Y
Yu Yang 已提交
86
    updater.init(m)
Y
Yu Yang 已提交
87

Y
Yu Yang 已提交
88 89
    # DataProvider Converter is a utility convert Python Object to Paddle C++
    # Input. The input format is as same as Paddle's DataProvider.
Y
Yu Yang 已提交
90 91 92 93
    converter = DataProviderConverter(
        input_types=[dp.dense_vector(784), dp.integer_value(10)])

    train_file = './data/raw_data/train'
Y
Yu Yang 已提交
94
    test_file = './data/raw_data/t10k'
Y
Yu Yang 已提交
95

Y
Yu Yang 已提交
96 97 98
    # start gradient machine.
    # the gradient machine must be started before invoke forward/backward.
    # not just for training, but also for inference.
Y
Yu Yang 已提交
99 100
    m.start()

Y
Yu Yang 已提交
101 102 103 104 105 106 107 108
    # evaluator can print error rate, etc. It is a C++ class.
    batch_evaluator = m.makeEvaluator()
    test_evaluator = m.makeEvaluator()

    # Get Train Data.
    # TrainData will stored in a data pool. Currently implementation is not care
    # about memory, speed. Just a very naive implementation.
    train_data_generator = input_order_converter(read_from_mnist(train_file))
Y
Yu Yang 已提交
109
    train_data = BatchPool(train_data_generator, 512)
Y
Yu Yang 已提交
110 111 112 113 114 115

    # outArgs is Neural Network forward result. Here is not useful, just passed
    # to gradient_machine.forward
    outArgs = api.Arguments.createArguments(0)

    for pass_id in xrange(2):  # we train 2 passes.
Y
Yu Yang 已提交
116 117
        updater.startPass()

Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131
        for batch_id, data_batch in enumerate(train_data()):
            # data_batch is input images.
            # here, for online learning, we could get data_batch from network.

            # Start update one batch.
            pass_type = updater.startBatch(len(data_batch))

            # Start BatchEvaluator.
            # batch_evaluator can be used between start/finish.
            batch_evaluator.start()

            # forwardBackward is a shortcut for forward and backward.
            # It is sometimes faster than invoke forward/backward separately,
            # because in GradientMachine, it may be async.
Y
Yu Yang 已提交
132 133 134 135
            m.forwardBackward(converter(data_batch), outArgs, pass_type)

            for each_param in m.getParameters():
                updater.update(each_param)
Y
Yu Yang 已提交
136

Y
Yu Yang 已提交
137
            # Get cost. We use numpy to calculate total cost for this batch.
Y
Yu Yang 已提交
138 139 140
            cost_vec = outArgs.getSlotValue(0)
            cost_vec = cost_vec.copyToNumpyMat()
            cost = cost_vec.sum() / len(data_batch)
Y
Yu Yang 已提交
141 142 143 144 145 146 147 148 149 150 151 152

            # Make evaluator works.
            m.eval(batch_evaluator)

            # Print logs.
            print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \
                cost, batch_evaluator

            batch_evaluator.finish()
            # Finish batch.
            #  * will clear gradient.
            #  * ensure all values should be updated.
Y
Yu Yang 已提交
153 154
            updater.finishBatch(cost)

Y
Yu Yang 已提交
155
        # testing stage. use test data set to test current network.
Y
Yu Yang 已提交
156
        updater.apply()
Y
Yu Yang 已提交
157 158
        test_evaluator.start()
        test_data_generator = input_order_converter(read_from_mnist(test_file))
Y
Yu Yang 已提交
159
        for data_batch in generator_to_batch(test_data_generator, 512):
Y
Yu Yang 已提交
160 161 162 163 164 165 166
            # in testing stage, only forward is needed.
            m.forward(converter(data_batch), outArgs, api.PASS_TEST)
            m.eval(test_evaluator)

        # print error rate for test data set
        print 'Pass', pass_id, ' test evaluator: ', test_evaluator
        test_evaluator.finish()
Y
Yu Yang 已提交
167 168 169 170 171 172 173
        updater.restore()

        updater.catchUpWith()
        params = m.getParameters()
        for each_param in params:
            assert isinstance(each_param, api.Parameter)
            value = each_param.getBuf(api.PARAMETER_VALUE)
Y
Yu Yang 已提交
174
            value = value.copyToNumpyArray()
Y
Yu Yang 已提交
175 176 177 178

            # Here, we could save parameter to every where you want
            print each_param.getName(), value

Y
Yu Yang 已提交
179 180
        updater.finishPass()

Y
Yu Yang 已提交
181
    m.finish()
Y
Yu Yang 已提交
182 183 184 185


if __name__ == '__main__':
    main()