test_dynrnn_static_input.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
import unittest
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid as fluid
from paddle.v2.fluid.backward import append_backward
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.framework import Program, switch_main_program
import bisect
import numpy as np

Y
yangyaming 已提交
11
fluid.default_startup_program().random_seed = 1
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


class TestDyRnnStaticInput(unittest.TestCase):
    def setUp(self):
        self._delta = 0.005
        self._max_sequence_len = 3
        self._program = Program()
        switch_main_program(self._program)
        self.output_dim = 10
        self.place = core.CPUPlace()
        self.prepare_x_tensor()
        self.prepare_static_input_tensor()
        self.exe = fluid.Executor(self.place)

    def prepare_x_tensor(self):
        self.x_tensor_dim = 10
        lod = [[0, 2, 3, 6]]
        shape = [lod[0][-1], self.x_tensor_dim]
        self.x_tensor_data = np.random.random(shape).astype('float32')
        self.x_tensor = core.LoDTensor()
        self.x_tensor.set_lod(lod)
        self.x_tensor.set(self.x_tensor_data, self.place)

    def prepare_static_input_tensor(self):
        self.static_input_tensor_dim = 4
        lod = [[0, 1, 3, 6]]
        shape = [lod[0][-1], self.static_input_tensor_dim]
        self.static_input_data = np.random.random(shape).astype('float32')
        self.static_input_tensor = core.LoDTensor()
        self.static_input_tensor.set_lod(lod)
        self.static_input_tensor.set(self.static_input_data, self.place)

    def fetch_value(self, var):
        fetch_outs = self.exe.run(feed={
            'x_tensor': self.x_tensor,
            'static_input_tensor': self.static_input_tensor
        },
                                  fetch_list=[var],
                                  return_numpy=False)
        return self._lodtensor_to_ndarray(fetch_outs[0])

    def _lodtensor_to_ndarray(self, lod_tensor):
        dims = lod_tensor.get_dims()
        ndarray = np.zeros(shape=dims).astype('float32')
        for i in xrange(np.product(dims)):
            ndarray.ravel()[i] = lod_tensor.get_float_element(i)
Y
yangyaming 已提交
58
        return ndarray, lod_tensor.lod()
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    def build_graph(self, only_forward=False):
        x_tensor = fluid.layers.data(
            name='x_tensor',
            shape=[self.x_tensor_dim],
            dtype='float32',
            lod_level=1)
        x_tensor.stop_gradient = False

        static_input_tensor = fluid.layers.data(
            name='static_input_tensor',
            shape=[self.static_input_tensor_dim],
            dtype='float32',
            lod_level=1)
        static_input_tensor.stop_gradient = False

        if only_forward:
            static_input_out_array = self._program.global_block().create_var(
                name='static_input_out_array',
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype='float32')
            static_input_out_array.stop_gradient = True

        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            step_x = rnn.step_input(x_tensor)
            step_static_input = rnn.static_input(static_input_tensor)
            if only_forward:
                fluid.layers.array_write(
                    x=step_static_input,
                    i=rnn.step_idx,
                    array=static_input_out_array)
            last = fluid.layers.sequence_pool(
                input=step_static_input, pool_type='last')
            projected = fluid.layers.fc(input=[step_x, last],
                                        size=self.output_dim)
            rnn.output(projected)

        if only_forward:
            static_input_step_outs = []
            step_idx = fluid.layers.fill_constant(
                shape=[1], dtype='int64', value=0)
            step_idx.stop_gradient = True

            for i in xrange(self._max_sequence_len):
                step_out = fluid.layers.array_read(static_input_out_array,
                                                   step_idx)
                step_out.stop_gradient = True
                static_input_step_outs.append(step_out)
                fluid.layers.increment(x=step_idx, value=1.0, in_place=True)

        if only_forward:
            return static_input_step_outs

        last = fluid.layers.sequence_pool(input=rnn(), pool_type='last')
        loss = fluid.layers.mean(x=last)
        append_backward(loss)
        static_input_grad = self._program.global_block().var(
            framework.grad_var_name('static_input_tensor'))
        return static_input_grad, loss

    def get_seq_len_from_lod(self, lod):
        return [lod[0][i + 1] - lod[0][i] for i in xrange(len(lod[0]) - 1)]

    def get_expected_static_step_outs(self):
        x_lod = self.x_tensor.lod()
        x_seq_len = self.get_seq_len_from_lod(x_lod)
        x_seq_len_sorted = sorted(x_seq_len)
        x_sorted_indices = np.argsort(x_seq_len)[::-1]

        static_lod = self.static_input_tensor.lod()
        static_sliced = [
            self.static_input_data[static_lod[0][i]:static_lod[0][i + 1]]
            for i in xrange(len(static_lod[0]) - 1)
        ]
        static_seq_len = self.get_seq_len_from_lod(static_lod)
        static_reordered = []
        for i in xrange(len(x_sorted_indices)):
            static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
        static_seq_len_reordered = [
            static_seq_len[x_sorted_indices[i]]
            for i in xrange(len(x_sorted_indices))
        ]

        static_step_outs = []
Y
yangyaming 已提交
144
        static_step_lods = []
145 146 147

        for i in xrange(self._max_sequence_len):
            end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
Y
yangyaming 已提交
148 149 150 151 152
            lod = [0]
            for i in xrange(end):
                lod.append(static_seq_len_reordered[i] + lod[-1])
            static_step_lods.append([lod])
            end = lod[-1]
153 154 155
            static_step_outs.append(
                np.array(static_reordered[:end]).astype('float32'))

Y
yangyaming 已提交
156
        return static_step_outs, static_step_lods
157 158 159 160

    def test_step_out(self):
        static_step_outs = self.build_graph(only_forward=True)
        self.exe.run(framework.default_startup_program())
Y
yangyaming 已提交
161
        expected_outs, expected_lods = self.get_expected_static_step_outs()
162
        for i in xrange(self._max_sequence_len):
Y
yangyaming 已提交
163 164 165
            step_out, lod = self.fetch_value(static_step_outs[i])
            self.assertTrue(np.allclose(step_out, expected_outs[i]))
            self.assertTrue(np.allclose(lod, expected_lods[i]))
166 167 168 169 170

    def test_network_gradient(self):
        static_input_grad, loss = self.build_graph()
        self.exe.run(framework.default_startup_program())

Y
yangyaming 已提交
171
        actual_gradients, actual_lod = self.fetch_value(static_input_grad)
172 173 174 175 176 177 178 179 180

        static_input_shape = self.static_input_tensor.get_dims()
        numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
        # calculate numeric gradients
        tensor_size = np.product(static_input_shape)
        for i in xrange(tensor_size):
            origin = self.static_input_tensor.get_float_element(i)
            x_pos = origin + self._delta
            self.static_input_tensor.set_float_element(i, x_pos)
Y
yangyaming 已提交
181
            y_pos = self.fetch_value(loss)[0][0]
182 183
            x_neg = origin - self._delta
            self.static_input_tensor.set_float_element(i, x_neg)
Y
yangyaming 已提交
184
            y_neg = self.fetch_value(loss)[0][0]
185 186
            self.static_input_tensor.set_float_element(i, origin)
            numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2
Y
yangyaming 已提交
187 188
        self.assertTrue(np.allclose(actual_gradients, numeric_gradients, 0.001))
        self.assertTrue(np.allclose(actual_lod, self.static_input_tensor.lod()))
189 190 191 192


if __name__ == '__main__':
    unittest.main()