io.py 36.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
T
bug fix  
tangwei12 已提交
16
import errno
T
tangwei12 已提交
17 18
import time
import shutil
19
import six
20

21
from paddle.fluid.evaluator import Evaluator
22
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
K
fix bug  
Kexin Zhao 已提交
23
from . import core
24 25

__all__ = [
T
tangwei12 已提交
26 27
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
    'load_persistables', 'save_inference_model', 'load_inference_model',
T
tangwei12 已提交
28
    'get_inference_program'
29 30 31 32
]


def is_parameter(var):
F
fengjiayi 已提交
33 34
    """
    Check whether the given variable is an instance of Parameter.
35 36

    Args:
F
fengjiayi 已提交
37
        var(Variable): The variable to be checked.
38 39

    Returns:
F
fengjiayi 已提交
40 41 42 43 44 45 46 47
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
48
    """
49 50 51 52
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_persistable(param)
    """
69
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
70 71
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
72
        return False
73 74 75 76 77 78 79 80
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
81
        dtype=var.dtype,
82 83 84 85 86
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


87 88 89 90 91
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
92
              filename=None):
93
    """
F
fengjiayi 已提交
94 95
    Save variables to the given directory by executor.

96 97 98 99
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
100
    are assigned, the `main_program` and the `predicate` will be ignored.
101

102 103 104
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
105
    use `filename` to specify it.
106

F
fengjiayi 已提交
107 108 109
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
110 111
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
112 113
                                    be used automatically.
                                    Default: None
114
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
115 116
                                   It has a higher priority than the `main_program`.
                                   Default: None
117 118 119 120
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
121 122
                                  `vars` is None).
                                  Default: None
123
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
153
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
154 155 156
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
157 158
    """
    if vars is None:
159
        if main_program is None:
Y
Yu Yang 已提交
160
            main_program = default_main_program()
161
        if not isinstance(main_program, Program):
162 163 164 165 166
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
167
            vars=list(filter(predicate, main_program.list_vars())),
168
            filename=filename)
169 170 171
    else:
        save_program = Program()
        save_block = save_program.global_block()
172 173

        save_var_map = {}
174
        for each_var in vars:
175 176 177
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
178
            new_var = _clone_var_in_block_(save_block, each_var)
179
            if filename is None:
180 181 182 183 184 185 186 187
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

188
        if filename is not None:
189 190 191 192
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

193
            save_block.append_op(
194 195
                type='save_combine',
                inputs={'X': save_var_list},
196
                outputs={},
197
                attrs={'file_path': os.path.join(dirname, filename)})
198

199 200 201
        executor.run(save_program)


202
def save_params(executor, dirname, main_program=None, filename=None):
203
    """
F
fengjiayi 已提交
204 205 206
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

207 208 209
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
210 211
    the file name.

212 213 214
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
215 216 217 218 219 220 221 222 223
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
224 225
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
226 227 228 229 230 231 232 233 234 235 236 237
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
238
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
239
                                 main_program=None)
240 241 242 243
    """
    save_vars(
        executor,
        dirname=dirname,
244
        main_program=main_program,
245
        vars=None,
246
        predicate=is_parameter,
247
        filename=filename)
248 249


250
def save_persistables(executor, dirname, main_program=None, filename=None):
251
    """
252 253
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
254 255
    or file `filename`.

256 257 258
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
259 260 261 262 263
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
264 265
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
266 267
                                    program will be used automatically.
                                    Default: None
268
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
269 270 271 272 273 274 275 276 277 278 279 280
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
281
            fluid.io.save_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
282
                                       main_program=None)
283 284 285 286
    """
    save_vars(
        executor,
        dirname=dirname,
287
        main_program=main_program,
288
        vars=None,
289
        predicate=is_persistable,
290
        filename=filename)
291 292


293 294 295 296 297
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
298
              filename=None):
299
    """
F
fengjiayi 已提交
300 301
    Load variables from the given directory by executor.

302 303 304 305
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
306 307
    are assigned, the `main_program` and the `predicate` will be ignored.

308 309 310
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
311
    use `filename` to specify it.
312

F
fengjiayi 已提交
313 314 315
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
316 317
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
318 319
                                    be used automatically.
                                    Default: None
320
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
321 322
                                   It has a higher priority than the `main_program`.
                                   Default: None
323 324 325 326
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
327 328
                                  `vars` is None).
                                  Default: None
329
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
349

F
fengjiayi 已提交
350 351 352 353 354 355 356 357 358
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
359
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
360
                               filename="vars_file")
361
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
362
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
363 364
    """
    if vars is None:
365
        if main_program is None:
Y
Yu Yang 已提交
366
            main_program = default_main_program()
367
        if not isinstance(main_program, Program):
368 369 370 371 372
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
373
            main_program=main_program,
374
            vars=list(filter(predicate, main_program.list_vars())),
375
            filename=filename)
376 377 378
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
379 380

        load_var_map = {}
381 382
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
383 384
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
385
            new_var = _clone_var_in_block_(load_block, each_var)
386
            if filename is None:
387 388 389 390 391 392 393 394
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

395
        if filename is not None:
396 397 398 399
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

400
            load_block.append_op(
401
                type='load_combine',
402
                inputs={},
403
                outputs={"Out": load_var_list},
404
                attrs={'file_path': os.path.join(dirname, filename)})
405 406
        executor.run(load_prog)

407 408 409 410
        # load slice vars on pserver, if have it.
        _load_slice_up_vars(executor, dirname,
                            main_program._slice_vars_and_atts)

411

412
def load_params(executor, dirname, main_program=None, filename=None):
413
    """
F
fengjiayi 已提交
414
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
415
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
416 417
    the file `filename`.

418 419 420
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
421 422
    `filename` to specify the file name.

423 424 425 426
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
427 428 429 430 431 432 433 434

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
435
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
436 437 438 439 440 441 442 443 444 445 446 447
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
448
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
449
                                main_program=None)
450 451
    """
    load_vars(
452 453 454
        executor,
        dirname=dirname,
        main_program=main_program,
455
        predicate=is_parameter,
456
        filename=filename)
457 458


459
def load_persistables(executor, dirname, main_program=None, filename=None):
460
    """
461 462
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
463 464
    `dirname` or the file `filename`.

465 466 467
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
468 469 470 471 472
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
473 474
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
475 476
                                    program will be used automatically.
                                    Default: None
477
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
478 479 480 481 482 483 484 485 486 487 488 489
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
490
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
491
                                       main_program=None)
492 493
    """
    load_vars(
494 495 496
        executor,
        dirname=dirname,
        main_program=main_program,
497
        predicate=is_persistable,
498
        filename=filename)
499 500


501 502
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
503
        main_program = default_main_program()
504 505
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
506 507 508
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
W
wanghaoshuang 已提交
509 510
            vars.extend(var.states)
            vars.extend(var.metrics)
W
wanghaoshuang 已提交
511 512 513
        else:
            vars.append(var)
    pruned_program = main_program.prune(targets=vars)
514 515 516 517
    inference_program = pruned_program.inference_optimize()
    return inference_program


518 519 520
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
521 522 523
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
524 525
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
526 527 528
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
529

530
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
531
        out = global_block.var(name)
W
Wu Yi 已提交
532
        global_block._prepend_op(
K
Kexin Zhao 已提交
533 534
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
535
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
536 537 538
            attrs={'col': i})


539 540 541
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
542 543
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
544 545 546
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
547

548
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
549 550 551 552 553 554 555
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


556 557 558 559
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
560
                         main_program=None,
561 562
                         model_filename=None,
                         params_filename=None):
563
    """
F
fengjiayi 已提交
564 565 566 567 568
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
569
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
570
                                     during inference.
571
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
572 573
                                     results.
        executor(Executor): The executor that saves the inference model.
574 575
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
576 577
                                    the default main program will be used.
                                    Default: None.
578 579
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
580
                                  `__model__` will be used.
581 582
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
583
                                   in separate files .
584

F
fengjiayi 已提交
585 586 587 588 589 590 591 592 593
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
594

F
fengjiayi 已提交
595 596 597 598 599
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

600 601 602
            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
603
            # and parameters are going to be saved in separate files under folder
604
            # "./infer_model".
605 606

    """
607
    if isinstance(feeded_var_names, six.binary_type):
F
fengjiayi 已提交
608
        feeded_var_names = [feeded_var_names]
609 610
    elif isinstance(feeded_var_names, six.text_type):
        feeded_var_names = [feeded_var_names.encode()]
F
fengjiayi 已提交
611
    else:
Q
Qiao Longfei 已提交
612
        if len(feeded_var_names) > 0:
613
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
614
            if not (bool(feeded_var_names) and all(
615 616 617 618 619 620 621 622 623 624 625
                    isinstance(name, six.binary_type)
                    for name in feeded_var_names)):
                if not (all(
                        isinstance(name, six.text_type)
                        for name in feeded_var_names)):
                    raise ValueError(
                        "'feed_var_names' should be a list of str.")
                else:
                    feeded_var_names = [
                        name.encode() for name in feeded_var_names
                    ]
F
fengjiayi 已提交
626 627

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
628
        target_vars = [target_vars]
F
fengjiayi 已提交
629 630 631 632 633
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

634
    if main_program is None:
Y
Yu Yang 已提交
635
        main_program = default_main_program()
636
    copy_program = main_program.clone()
637 638 639 640

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

641
    # Clear the is_target information and remove the existed feed and fetch op
642
    global_block = copy_program.global_block()
643 644 645
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
W
Wu Yi 已提交
646
            global_block._remove_op(i)
647
    copy_program.desc.flush()
648

649
    pruned_program = copy_program.prune(targets=target_vars)
650
    inference_program = pruned_program.inference_optimize()
651 652
    fetch_var_names = [v.name for v in target_vars]

K
Kexin Zhao 已提交
653 654
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
655

656 657
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
658
    else:
659 660
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)
661

662 663 664 665
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    with open(model_filename, "wb") as f:
666
        f.write(inference_program.desc.serialize_to_string())
667

668
    save_persistables(executor, dirname, inference_program, params_filename)
669

T
tangwei12 已提交
670 671 672 673 674 675 676 677
    # if there is lookup table, the trainer 0 will notify all pserver to save.
    if main_program._is_distributed and main_program._is_chief:
        if main_program._distributed_lookup_table:
            lookup_table_filename = os.path.join(dirname, "__lookup_table__")
            _save_lookup_tables_by_notify(
                executor, lookup_table_filename,
                main_program._distributed_lookup_table, main_program._endpoints)

678

679 680 681
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
682 683 684 685
                         params_filename=None,
                         training_role=None,
                         role_id=None,
                         pserver_endpoints=None):
686 687 688
    """
    Load inference model from a directory

F
fengjiayi 已提交
689 690 691 692
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
693
                                  If it is None, the default filename
F
fengjiayi 已提交
694 695 696
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
697 698 699
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
700 701 702 703
                                   files, set it as 'None'.

    Returns:
        tuple: The return of this function is a tuple with three elements:
704 705 706 707 708
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
709 710 711 712 713 714 715 716 717 718
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
719
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
720 721 722 723 724
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

725 726 727 728 729
            # In this exsample, the inference program was saved in the
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
730
            # program to get the inference result.
731

732 733 734 735
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

T
tangwei12 已提交
736 737 738
    if training_role == "PSERVER":
        _load_lookup_table_vars(executor, dirname, program, role_id)

739 740
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
741
    else:
742 743 744 745 746
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
747

748
    with open(model_filename, "rb") as f:
749 750
        program_desc_str = f.read()

751
    program = Program.parse_from_string(program_desc_str)
752
    load_persistables(executor, dirname, program, params_filename)
753

T
tangwei12 已提交
754
    if pserver_endpoints:
T
tangwei12 已提交
755
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
756

757 758
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
759 760 761 762 763
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
764 765


T
tangwei12 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
def _save_lookup_tables_by_notify(executor, dirname, lookup_table,
                                  pserver_endpoints):
    """
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name,
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name
        ps_endpoint_list(list): the parameter server ip:port list.
            when use distribute lookup table, we can get ps_endpoint_list by
            distribute arguments.
    Return:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            _save_pserver_vars_by_notify(executor=exe,
                    dirname=param_path, lookup_table=table_name,
                    pserver_endpoints=ps_endpoints)
    """

    pserver_notify_program = Program()
    pserver_notify_block = pserver_notify_program.global_block()

    attrs = {}
    attrs['epmap'] = pserver_endpoints.split(",")
    attrs['dir'] = dirname
    attrs['lookup_table'] = lookup_table

    pserver_notify_block.append_op(
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
    executor.run(pserver_notify_program)


def _load_lookup_table_vars(executor, dirname, program, pserver_id):
    """
    The parameter server will load lookup table's local file in
    selectedrows variable.

    Args:
        executor(Executor): The executor to run for loading persistable variables
        dirname(str): The directory path
        main_program(Program): Find the variable named table_name in main_program
        pserver_id(int): the serial number in pserver_endpoints list
        table_name(str): lookup table name

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            dirname = "./checkpoints/checkpoint_9/"
            prog = fluid.default_main_program()
            pserver_id = 1
            table_name = "share_w"
            _load_lookup_table_vars(executor=exe,
                    dirname=dirname, program=prog, pserver_id=pserver_id,
                    table_name=table_name)
    """

    LOOKUP_TABLE_TYPE = "lookup_table"
    lookup_table_var_name = None

    for op in program.global_block().ops:
        if op.type == LOOKUP_TABLE_TYPE:
            if op.attrs['is_distributed'] is True:
                if lookup_table_var_name is None:
                    lookup_table_var_name = op.input("W")[0]
                if lookup_table_var_name != op.input("W")[0]:
                    raise RuntimeError("all distributed lookup_table_ops"
                                       " should have only one table")

    lookup_table_var = program.global_block().vars[lookup_table_var_name]
    if lookup_table_var is None:
        return

    lookup_table_dir = os.path.join(dirname, "__lookup_table__")
    table_file = "{}.{}".format(lookup_table_var.name, pserver_id)

    load_prog = Program()
    load_block = load_prog.global_block()

    load_block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [lookup_table_var]},
        attrs={'file_path': os.path.join(lookup_table_dir, table_file)})

    executor.run(load_prog)


def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
874 875 876 877
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
    program = program.clone()
    return program
T
tangwei12 已提交
878 879


X
xuwei06 已提交
880 881
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
882 883 884 885 886 887 888 889 890 891 892
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
893

F
fengjiayi 已提交
894 895
    Examples:
        .. code-block:: python
X
xuwei06 已提交
896

F
fengjiayi 已提交
897 898 899
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
900

X
xuwei06 已提交
901
    """
X
xuwei06 已提交
902 903
    assert is_parameter(para)

X
xuwei06 已提交
904 905 906 907 908 909 910 911
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
912
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
913

F
fengjiayi 已提交
914 915 916 917 918 919 920
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
921

F
fengjiayi 已提交
922 923
    Returns:
        numpy.array: The parameter's values.
924

F
fengjiayi 已提交
925 926 927 928 929
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
930

F
fengjiayi 已提交
931 932 933 934 935
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
936 937
    """
    if program is None:
Y
Yu Yang 已提交
938
        program = default_main_program()
X
xuwei06 已提交
939 940
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
T
tangwei12 已提交
941 942


943 944
def _load_slice_up_vars(executor, dirname, slice_vars_and_atts):
    if slice_vars_and_atts == None or len(slice_vars_and_atts) == 0:
945 946 947 948 949
        return

    load_prog = Program()
    load_block = load_prog.global_block()

950
    for var_tuple in slice_vars_and_atts:
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
        orig_var = var_tuple[0]
        start = var_tuple[1]
        slice_var = var_tuple[2]
        end = start + reduce(lambda x, y: x * y, slice_var.shape)

        clone_orig_var = load_block.create_var(
            name=orig_var.name,
            type=orig_var.type,
            shape=orig_var.shape,
            dtype=orig_var.dtype,
            persistable=True)

        clone_slice_var = load_block.create_var(
            name=slice_var.name,
            type=slice_var.type,
            shape=slice_var.shape,
            dtype=slice_var.dtype,
            persistable=True)

        load_block.append_op(
            type='load',
            inputs={},
            outputs={'Out': [clone_orig_var]},
            attrs={'file_path': os.path.join(dirname, clone_orig_var.name)})
        load_block.append_op(
            type="slice",
            inputs={'Input': clone_orig_var},
            outputs={'Out': clone_slice_var},
            attrs={'axes': [0],
                   'starts': [start],
                   'ends': [end]})

    executor.run(load_prog)