instance_norm_op.cc 28.8 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/instance_norm_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
L
lvmengsi 已提交
21 22 23 24 25 26
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

void InstanceNormOp::InferShape(framework::InferShapeContext *ctx) const {
27 28 29 30 31 32
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "InstanceNorm");
  OP_INOUT_CHECK(ctx->HasOutput("SavedMean"), "Output", "SavedMean",
                 "InstanceNorm");
  OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"), "Output", "SavedVariance",
                 "InstanceNorm");
L
lvmengsi 已提交
33 34

  const auto x_dims = ctx->GetInputDim("X");
35 36 37 38 39 40 41
  PADDLE_ENFORCE_NE(framework::product(x_dims), 0,
                    platform::errors::PreconditionNotMet(
                        "The Input variable X(%s) has not "
                        "been initialized. You may need to confirm "
                        "if you put exe.run(startup_program) "
                        "after optimizer.minimize function.",
                        ctx->Inputs("X").front()));
42 43 44 45 46 47 48 49 50 51 52 53 54 55
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims, x_dims.size()));
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "smaller than or equal to 5, But received: the shape of input "
          "X = [%s], the dimension of input X = [%d]",
          x_dims, x_dims.size()));
L
lvmengsi 已提交
56 57 58 59
  auto N = x_dims[0];
  auto C = x_dims[1];
  auto NxC = N * C;

C
ceci3 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  if (ctx->HasInput("Scale")) {
    auto scale_dim = ctx->GetInputDim("Scale");

    PADDLE_ENFORCE_EQ(
        scale_dim.size(), 1UL,
        platform::errors::InvalidArgument(
            "ShapeError: the dimension of scale must equal to 1."
            "But received: the shape of scale is [%s], the dimension "
            "of scale is [%d]",
            scale_dim, scale_dim.size()));

    bool check = !((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0));

    if (check) {
      PADDLE_ENFORCE_EQ(scale_dim[0], C,
                        platform::errors::InvalidArgument(
                            "ShapeError: the shape of scale must equal to [%d]"
                            "But received: the shape of scale is [%d]",
                            C, scale_dim[0]));
    }
  }
  if (ctx->HasInput("Bias")) {
    auto bias_dim = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(
        bias_dim.size(), 1UL,
        platform::errors::InvalidArgument(
            "ShapeError: the dimension of bias must equal to 1."
            "But received: the shape of bias is [%s],the dimension "
            "of bias is [%d]",
            bias_dim, bias_dim.size()));

    bool check = !((!ctx->IsRuntime()) && (framework::product(bias_dim) <= 0));
    if (check) {
      PADDLE_ENFORCE_EQ(bias_dim[0], C,
                        platform::errors::InvalidArgument(
                            "ShapeError: the shape of bias must equal to [%d]"
                            "But received: the shape of bias is [%d]",
                            C, bias_dim[0]));
    }
L
lvmengsi 已提交
99 100 101 102 103 104 105 106 107 108
  }

  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("SavedMean", {NxC});
  ctx->SetOutputDim("SavedVariance", {NxC});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType InstanceNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
109
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
L
lvmengsi 已提交
110 111 112 113 114 115 116
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto in_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    in_param_type = framework::proto::VarType::FP64;
  }
C
ceci3 已提交
117 118 119 120 121 122 123 124 125 126
  if (ctx.HasInput("Scale")) {
    PADDLE_ENFORCE_EQ(in_param_type, ctx.Input<Tensor>("Scale")->type(),
                      platform::errors::InvalidArgument(
                          "Scale input should be of float type"));
  }
  if (ctx.HasInput("Bias")) {
    PADDLE_ENFORCE_EQ(in_param_type, ctx.Input<Tensor>("Bias")->type(),
                      platform::errors::InvalidArgument(
                          "Bias input should be of float type"));
  }
L
lvmengsi 已提交
127 128 129 130 131 132 133 134 135

  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}

void InstanceNormOpMaker::Make() {
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
136 137
                          platform::errors::InvalidArgument(
                              "'epsilon' should be between 0.0 and 0.001."));
L
lvmengsi 已提交
138 139 140 141
      });
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
C
ceci3 已提交
142 143
           "that is applied to the output")
      .AsDispensable();
L
lvmengsi 已提交
144 145
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
C
ceci3 已提交
146 147
           "that is applied to the output")
      .AsDispensable();
L
lvmengsi 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  AddOutput("Y", "result after normalization");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddComment(R"DOC(
Instance Normalization.

Instance Norm has been implemented as disscussed in the paper:
https://arxiv.org/pdf/1607.08022.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is as following:
NCHW `[batch, in_channels, in_height, in_width]`

)DOC");
}

template <typename T>
class InstanceNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();

    const int N = x_dims[0];
    const int C = x_dims[1];
    const int NxC = N * C;

    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    auto *place = dev_ctx.eigen_device();

192 193 194
    Eigen::DSizes<int, 2> shape(NxC, sample_size);
// Once eigen on Windows is updated, the if branch can be removed.
#ifndef EIGEN_HAS_INDEX_LIST
L
lvmengsi 已提交
195 196 197
    Eigen::DSizes<int, 2> bcast(1, sample_size);
    Eigen::DSizes<int, 2> C_shape(C, 1);
    Eigen::DSizes<int, 2> NxC_shape(NxC, 1);
198 199 200 201 202 203 204 205 206 207
    Eigen::DSizes<int, 1> rdims(1);
#else
    Eigen::IndexList<Eigen::type2index<1>, int> bcast;
    bcast.set(1, sample_size);
    Eigen::IndexList<int, Eigen::type2index<1>> C_shape;
    C_shape.set(0, C);
    Eigen::IndexList<int, Eigen::type2index<1>> NxC_shape;
    NxC_shape.set(0, NxC);
    Eigen::IndexList<Eigen::type2index<1>> rdims;
#endif
L
lvmengsi 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    math::SetConstant<platform::CPUDeviceContext, T> set_constant;

    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());
    set_constant(dev_ctx, saved_mean, static_cast<T>(0));
    set_constant(dev_ctx, saved_variance, static_cast<T>(0));

    auto saved_mean_a = framework::EigenVector<T>::Flatten(*saved_mean);
    auto saved_mean_e = saved_mean_a.reshape(NxC_shape);
    auto saved_variance_a = framework::EigenVector<T>::Flatten(*saved_variance);
    auto saved_variance_e = saved_variance_a.reshape(NxC_shape);

    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto x_arr = x_e.reshape(shape);

    saved_mean_e.device(*place) = x_arr.mean(rdims);
    auto saved_variance_arr =
        (x_arr - saved_mean_e.broadcast(bcast)).square().mean(rdims) + epsilon;

    saved_variance_e.device(*place) = saved_variance_arr.sqrt().inverse();

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
C
ceci3 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    Tensor scale_data;
    Tensor bias_data;
    if (!scale) {
      scale_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &scale_data, static_cast<T>(1));
    }

    if (!bias) {
      bias_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &bias_data, static_cast<T>(0));
    }
    auto scale_e = scale
                       ? framework::EigenVector<T>::Flatten(*scale)
                       : framework::EigenVector<T>::Flatten(
                             const_cast<const framework::Tensor &>(scale_data));
L
lvmengsi 已提交
248
    auto scale_arr = scale_e.reshape(C_shape);
C
ceci3 已提交
249 250 251
    auto bias_e = bias ? framework::EigenVector<T>::Flatten(*bias)
                       : framework::EigenVector<T>::Flatten(
                             const_cast<const framework::Tensor &>(bias_data));
L
lvmengsi 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    auto bias_arr = bias_e.reshape(C_shape);

    y->mutable_data<T>(ctx.GetPlace());
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto y_arr = y_e.reshape(shape);

    // (x - mean) * inv_std * scale + bias
    Eigen::DSizes<int, 2> bcast_param(N, sample_size);
    y_arr.device(*place) = (x_arr - saved_mean_e.broadcast(bcast)) *
                               saved_variance_e.broadcast(bcast) *
                               scale_arr.broadcast(bcast_param) +
                           bias_arr.broadcast(bcast_param);
  }
};

void InstanceNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
268 269 270 271 272 273 274
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNormGrad");
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                 framework::GradVarName("Y"), "InstanceNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "InstanceNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "InstanceNormGrad");
L
lvmengsi 已提交
275 276

  // check output
277 278
  OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                 framework::GradVarName("X"), "InstanceNormGrad");
L
lvmengsi 已提交
279 280 281 282 283
  const auto x_dims = ctx->GetInputDim("X");
  const int C = x_dims[1];
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
C
ceci3 已提交
284 285
  }
  if (ctx->HasOutput(framework::GradVarName("Bias"))) {
L
lvmengsi 已提交
286 287 288 289 290 291 292 293
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
  }
}

framework::OpKernelType InstanceNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
C
ceci3 已提交
294 295
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
L
lvmengsi 已提交
296 297 298 299 300 301 302 303
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
C
ceci3 已提交
304 305
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
L
lvmengsi 已提交
306
  }
307 308
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
L
lvmengsi 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
}

template <typename T>
class InstanceNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");

    const auto &x_dims = x->dims();

    const int N = x_dims[0];
    const int C = x_dims[1];
    const int NxC = N * C;
    const int sample_size = x->numel() / N / C;

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
    d_x->mutable_data<T>(ctx.GetPlace());

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    auto *place = dev_ctx.eigen_device();

337 338 339 340
    Eigen::DSizes<int, 2> rshape(NxC, sample_size);
    Eigen::DSizes<int, 2> param_shape(N, C);
    Eigen::DSizes<int, 2> shape(NxC, sample_size);
#ifndef EIGEN_HAS_INDEX_LIST
L
lvmengsi 已提交
341 342 343 344 345
    Eigen::DSizes<int, 1> rdims(0);
    Eigen::DSizes<int, 1> mean_rdims(1);
    Eigen::DSizes<int, 2> bcast(1, sample_size);
    Eigen::DSizes<int, 2> C_shape(C, 1);
    Eigen::DSizes<int, 2> NxC_shape(NxC, 1);
346 347 348 349 350 351 352 353 354 355
#else
    Eigen::IndexList<Eigen::type2index<0>> rdims;
    Eigen::IndexList<Eigen::type2index<1>> mean_rdims;
    Eigen::IndexList<Eigen::type2index<1>, int> bcast;
    bcast.set(1, sample_size);
    Eigen::IndexList<int, Eigen::type2index<1>> C_shape;
    C_shape.set(0, C);
    Eigen::IndexList<int, Eigen::type2index<1>> NxC_shape;
    NxC_shape.set(0, NxC);
#endif
L
lvmengsi 已提交
356

C
ceci3 已提交
357 358 359 360 361 362 363 364 365 366 367 368
    math::SetConstant<platform::CPUDeviceContext, T> set_constant;

    Tensor scale_data;
    if (!scale) {
      scale_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &scale_data, static_cast<T>(1));
    }

    auto scale_e = scale
                       ? framework::EigenVector<T>::Flatten(*scale)
                       : framework::EigenVector<T>::Flatten(
                             const_cast<const framework::Tensor &>(scale_data));
L
lvmengsi 已提交
369 370 371 372 373 374 375 376 377 378 379
    auto mean_e = framework::EigenVector<T>::Flatten(*saved_mean);
    auto inv_var_e = framework::EigenVector<T>::Flatten(*saved_inv_variance);
    auto dy_e = framework::EigenVector<T>::Flatten(*d_y);
    auto x_e = framework::EigenVector<T>::Flatten(*x);

    auto scale_arr = scale_e.reshape(C_shape);
    auto mean_arr = mean_e.reshape(NxC_shape);
    auto inv_var_arr = inv_var_e.reshape(NxC_shape);
    auto dy_arr = dy_e.reshape(shape);
    auto x_arr = x_e.reshape(shape);

380 381
    auto tmp = (x_arr - mean_arr.eval().broadcast(bcast)) *
               inv_var_arr.eval().broadcast(bcast);
L
lvmengsi 已提交
382 383 384 385 386 387 388 389 390 391 392

    // math: d_bias = np.sum(d_y, axis=(n,h,w))
    // math: d_scale = np.sum((X-mean) / inv_std * dy, axis=(n, h,w))
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, d_scale, static_cast<T>(0));
      set_constant(dev_ctx, d_bias, static_cast<T>(0));

      auto d_scale_e = framework::EigenVector<T>::Flatten(*d_scale);
      auto d_scale_data = d_scale_e.reshape(C_shape);
C
ceci3 已提交
393
      auto d_bias_e = framework::EigenVector<T>::Flatten(*d_bias);
L
lvmengsi 已提交
394 395 396 397 398 399 400
      auto d_bias_data = d_bias_e.reshape(C_shape);
      d_bias_data.device(*place) =
          dy_arr.sum(mean_rdims).reshape(param_shape).sum(rdims);
      d_scale_data.device(*place) =
          (tmp * dy_arr).sum(mean_rdims).reshape(param_shape).sum(rdims);
    }

401 402
    auto dy_mean =
        dy_arr.mean(mean_rdims).reshape(NxC_shape).eval().broadcast(bcast);
L
lvmengsi 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

    Eigen::DSizes<int, 2> bcast_param(N, sample_size);
    set_constant(dev_ctx, d_x, static_cast<T>(0));
    // math: d_x = scale * inv_var * d_y - scale * inv_var * np.sum(d_y,
    // axis=(h,w))
    //             - scale * (X - mean) * inv_var.pow(3) * np.sum(d_y * (X -
    //             mean),
    //             axis=(h,w))
    auto dx_e = framework::EigenVector<T>::Flatten(*d_x);
    auto dx_arr = dx_e.reshape(shape);
    dx_arr.device(*place) = scale_arr.broadcast(bcast_param) *
                            inv_var_arr.broadcast(bcast) *
                            (dy_arr - dy_mean -
                             tmp *
                                 (dy_arr * tmp)
                                     .mean(mean_rdims)
                                     .reshape(NxC_shape)
420
                                     .eval()
L
lvmengsi 已提交
421 422 423 424 425 426
                                     .broadcast(bcast));
  }
};

void InstanceNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
427 428 429 430 431 432 433 434
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("DDX"), "Input", "DDX",
                 "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "InstanceNormDoubleGrad");
L
lvmengsi 已提交
435 436

  // check output
437 438
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX",
                 "InstanceNormDoubleGrad");
L
lvmengsi 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

  const auto x_dims = ctx->GetInputDim("X");
  const int C = x_dims[1];
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType InstanceNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
C
ceci3 已提交
457 458
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
L
lvmengsi 已提交
459 460 461 462 463 464 465 466
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
C
ceci3 已提交
467 468
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
L
lvmengsi 已提交
469
  }
470 471
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
L
lvmengsi 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

template <typename T>
class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

C
ceci3 已提交
492 493 494
    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> set_constant;

L
lvmengsi 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    const auto &x_dims = X->dims();
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    const int sample_size = X->numel() / N / C;
    const int NxC = N * C;

    const T *mean_data = Saved_mean->data<T>();
    const T *inv_var_data = Saved_variance->data<T>();
    Tensor mean_tensor;
    Tensor inv_var_tensor;
    ConstEigenArrayMap<T> x_arr(X->data<T>(), sample_size, NxC);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, NxC);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, NxC);

    Tensor mean_tile;
    mean_tile.Resize({sample_size, NxC});
    mean_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> mean_tile_data(mean_tile.mutable_data<T>(ctx.GetPlace()),
                                    sample_size, NxC);

    Tensor inv_var_tile;
    inv_var_tile.Resize({sample_size, NxC});
    inv_var_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> inv_var_tile_data(
        inv_var_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);

    mean_tile_data = mean_arr.transpose().replicate(sample_size, 1);
    inv_var_tile_data = inv_var_arr.transpose().replicate(sample_size, 1);

C
ceci3 已提交
524 525 526 527 528 529 530
    Tensor Scale_data;
    if (!Scale) {
      Scale_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &Scale_data, static_cast<T>(1));
    }
    ConstEigenVectorArrayMap<T> scale_arr(
        Scale ? Scale->data<T>() : Scale_data.data<T>(), C);
L
lvmengsi 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

    Tensor scale_tile;
    scale_tile.Resize({sample_size, NxC});
    scale_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> scale_tile_data(scale_tile.mutable_data<T>(ctx.GetPlace()),
                                     sample_size, NxC);
    scale_tile_data = scale_arr.transpose().replicate(sample_size, N);

    ConstEigenArrayMap<T> dy_arr(dY->data<T>(), sample_size, NxC);
    ConstEigenArrayMap<T> ddx_arr(ddX->data<T>(), sample_size, NxC);

    // math: dx = scale * ((x - mean) * inv_var / HxW * (np.mean(ddx,
    // axis=(h,w)) *
    //          np.sum(dy, axis=(h,w)) -
    //          np.sum(dy * ddx, axis=(h,w)) + 3 * np.mean(dy * (x - mean),
    //          axis=(h,w)) * inv_var.pow(2) *
    //          np.sum(ddx * (x - mean), axis=(h,w))) + inv_var.pow(3) / HxW *
    //          np.sum(ddx * (x - mean)) *
    //          (np.mean(dy, axis=(h,w)) - dy) + inv_var.pow(3) / HxW *
    //          np.sum(dy,
    //          axis=(h,w)) * (x - mean) *
552 553
    //          (np.mean(ddx, axis=(h,w)) - ddx)) + ddr * (dy * inv_var -
    //          inv_var *
L
lvmengsi 已提交
554 555
    //          np.mean(dy, axis=(h,w)) -
    //          inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
556
    //          axis=(h,w)))
L
lvmengsi 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

    Tensor x_sub_mean_mul_invstd;
    x_sub_mean_mul_invstd.Resize({sample_size, NxC});
    x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> x_sub_mean_mul_invstd_arr(
        x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace()), sample_size,
        NxC);
    x_sub_mean_mul_invstd_arr = (x_arr - mean_tile_data) * inv_var_tile_data;

    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, dX, static_cast<T>(0));
      EigenArrayMap<T> dx_arr(dX->mutable_data<T>(ctx.GetPlace()), sample_size,
                              NxC);

      if (ddX) {
        dx_arr +=
            x_sub_mean_mul_invstd_arr * inv_var_tile_data * inv_var_tile_data /
            sample_size *
            (ddx_arr.colwise().sum() * dy_arr.colwise().sum() / sample_size -
             (dy_arr * ddx_arr).colwise().sum() +
             3. * (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() *
                 (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                 sample_size);

        dx_arr += (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                  sample_size * inv_var_tile_data * inv_var_tile_data *
                  (dy_arr.colwise().sum() / sample_size - dy_arr);

        dx_arr += (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                  sample_size * inv_var_tile_data * inv_var_tile_data *
                  (ddx_arr.colwise().sum() / sample_size - ddx_arr);

590
        dx_arr = scale_tile_data * dx_arr;
L
lvmengsi 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
      }
      if (ddScale) {
        ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);

        Tensor ddscale_tile;
        ddscale_tile.Resize({sample_size, NxC});
        ddscale_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddscale_tile_data(
            ddscale_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N);

        dx_arr += (dy_arr * inv_var_tile_data -
                   dy_arr.colwise().sum() / sample_size * inv_var_tile_data -
                   x_sub_mean_mul_invstd_arr * inv_var_tile_data *
                       (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                       sample_size) *
                  ddscale_tile_data;
      }
    }
    if (dScale) {
      // math: dscale = inv_var * (dy - np.mean(dy, axis=(h,w) - (x-mean) *
      //            inv_var.pow(2) * np.mean(dy * (x-mean), axis=(h,w)))) * ddx
      dScale->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, dScale, static_cast<T>(0));
      EigenVectorArrayMap<T> dscale_arr(dScale->mutable_data<T>(ctx.GetPlace()),
                                        C);
      if (ddX) {
        Tensor first_grad;
        first_grad.Resize({sample_size, NxC});
        first_grad.mutable_data<T>(ctx.GetPlace());
        set_constant(dev_ctx, &first_grad, static_cast<T>(0));
        EigenArrayMap<T> first_grad_arr(
            first_grad.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);

        first_grad_arr +=
            inv_var_tile_data *
627 628
            (dy_arr -
             dy_arr.colwise().sum().replicate(sample_size, 1) / sample_size -
L
lvmengsi 已提交
629
             x_sub_mean_mul_invstd_arr *
630 631 632 633
                 (dy_arr * x_sub_mean_mul_invstd_arr)
                     .colwise()
                     .sum()
                     .replicate(sample_size, 1) /
L
lvmengsi 已提交
634
                 sample_size);
635
        first_grad_arr = first_grad_arr * ddx_arr;
L
lvmengsi 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
        for (int nc = 0; nc < NxC; ++nc) {
          int c = nc % C;
          dscale_arr(c) += first_grad_arr.colwise().sum()(nc);
        }
      }
    }
    if (ddY) {
      // math: ddy = (x - mean) * inv_var * ddscale + ddbias +
      //           scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) *
      //           np.mean(ddx * (x - mean), axis=(h,w)))
      ddY->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, ddY, static_cast<T>(0));
      EigenArrayMap<T> ddy_arr(ddY->mutable_data<T>(ctx.GetPlace()),
                               sample_size, NxC);
      if (ddX) {
        ddy_arr += scale_tile_data * inv_var_tile_data *
                   (ddx_arr - ddx_arr.colwise().sum() / sample_size -
                    x_sub_mean_mul_invstd_arr *
                        (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                        sample_size);
      }
      if (ddScale && ddBias) {
        ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);
        Tensor ddscale_tile;
        ddscale_tile.Resize({sample_size, NxC});
        ddscale_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddscale_tile_data(
            ddscale_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N);

        ConstEigenVectorArrayMap<T> ddbias_arr(ddBias->data<T>(), C);
        Tensor ddbias_tile;
        ddbias_tile.Resize({sample_size, NxC});
        ddbias_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddbias_tile_data(
            ddbias_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddbias_tile_data = ddbias_arr.transpose().replicate(sample_size, N);

        ddy_arr += x_sub_mean_mul_invstd_arr * ddscale_tile_data;
        ddy_arr += ddbias_tile_data;
      }
    }
  }
};

681
DECLARE_INPLACE_OP_INFERER(InstanceNormDoubleGradOpInplaceInferer,
L
lvmengsi 已提交
682 683 684 685 686 687 688
                           {"DY", "DDY"});

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(instance_norm, ops::InstanceNormOp, ops::InstanceNormOpMaker,
H
hong 已提交
689 690 691
                  ops::InstanceNormOpInferVarType,
                  ops::InstanceNormGradMaker<paddle::framework::OpDesc>,
                  ops::InstanceNormGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
692
REGISTER_OPERATOR(instance_norm_grad, ops::InstanceNormGradOp,
H
hong 已提交
693 694
                  ops::InstanceNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::InstanceNormDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
695
REGISTER_OPERATOR(instance_norm_grad_grad, ops::InstanceNormDoubleGradOp,
696
                  ops::InstanceNormDoubleGradOpInplaceInferer);
L
lvmengsi 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

REGISTER_OP_CPU_KERNEL(
    instance_norm,
    ops::InstanceNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InstanceNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    instance_norm_grad,
    ops::InstanceNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InstanceNormGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    instance_norm_grad_grad,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                      float>,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                      double>);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

REGISTER_OP_VERSION(instance_norm)
    .AddCheckpoint(
        R"ROC(
      Change dispensable of attribute from False to True in instance_norm.
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .ModifyAttr(
                "Bias",
                "The arg 'dispensable' of Input 'Bias' is changed: from "
                "'False' to 'True'.",
                true)
            .ModifyAttr(
                "Scale",
                "The arg 'dispensable' of Input 'Scale' is changed: from "
                "'False' to 'True'.",
                true));