cross_entropy_op.cc 6.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cross_entropy_op.h"

namespace paddle {
namespace operators {

20 21
using framework::LoDTensor;

22
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
 protected:
D
dongzhihong 已提交
27
  void InferShape(const framework::InferShapeContext &ctx) const override {
28
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
29
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
                            "Input(Label) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"), "Output(Y) must not be null.");

    auto x = ctx.Input<Tensor>("X");
    auto label = ctx.Input<Tensor>("Label");
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(label->dims().size(), 2,
                      "Input(Label)'s rank must be 2.");
    // TODO(xinghai-sun): remove this check after swtiching to bool
    PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
                   ctx.Attr<int>("soft_label") == 1);
    PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
                      "The 1st dimension of Input(X) and Input(Label) must "
                      "be equal.");
    if (ctx.Attr<int>("soft_label") == 1) {
      PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
                        "If Attr(soft_label) == 1, The 2nd dimension of "
                        "Input(X) and Input(Label) must be equal.");
48
    } else {
49 50 51
      PADDLE_ENFORCE_EQ(label->dims()[1], 1,
                        "If Attr(soft_label) == 0, The 2nd dimension of "
                        "Input(Label) must be 1.");
52
    }
53

54
    ctx.Output<LoDTensor>("Y")->Resize({x->dims()[0], 1});
55
    ctx.ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
56 57 58
  }
};

59
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
60 61 62
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yan Chunwei 已提交
63
 protected:
D
dongzhihong 已提交
64
  void InferShape(const framework::InferShapeContext &ctx) const override {
65 66 67 68 69
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
                            "Input(Y@GRAD) must not be null.");
70

71
    auto x = ctx.Input<Tensor>("X");
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    auto label = ctx.Input<Tensor>("Label");
    auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dy->dims().size(), 2, "Input(Y@Grad)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(label->dims().size(), 2,
                      "Input(Label)'s rank must be 2.");
    // TODO(xinghai-sun): remove this check after swtiching to bool
    PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
                   ctx.Attr<int>("soft_label") == 1);
    PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
                      "The 1st dimension of Input(X) and Input(Label) must "
                      "be equal.");
    PADDLE_ENFORCE_EQ(x->dims()[0], dy->dims()[0],
                      "The 1st dimension of Input(X) and Input(Y@Grad) must "
                      "be equal.");
    PADDLE_ENFORCE_EQ(dy->dims()[1], 1,
                      "The 2nd dimension of Input(Y@Grad) must be 1.");
    if (ctx.Attr<int>("soft_label") == 1) {
      PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
                        "If Attr(soft_label) == 1, The 2nd dimension of "
                        "Input(X) and Input(Label) must be equal.");
    } else {
      PADDLE_ENFORCE_EQ(label->dims()[1], 1,
                        "If Attr(soft_label) == 0, The 2nd dimension of "
                        "Input(Label) must be 1.");
    }
Y
Yan Chunwei 已提交
98

99
    auto dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
100
    dx->Resize(x->dims());
Y
Yan Chunwei 已提交
101 102 103
  }
};

104
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
105
 public:
106 107
  CrossEntropyOpMaker(framework::OpProto *proto,
                      framework::OpAttrChecker *op_checker)
108
      : OpProtoAndCheckerMaker(proto, op_checker) {
109 110 111
    AddInput("X", "The first input of CrossEntropyOp");
    AddInput("Label", "The second input of CrossEntropyOp");
    AddOutput("Y", "The output of CrossEntropyOp");
112 113
    AddAttr<int>("soft_label", "Is soft label. Default zero.").SetDefault(0);

Q
Qiao Longfei 已提交
114
    AddComment(R"DOC(
115
CrossEntropy Operator.
Q
Qiao Longfei 已提交
116

117 118 119 120
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
    soft_label = 0, Label[i, 0] indicates the class index for sample i:
121

122
                Y[i] = -log(X[i, Label[i]])
Q
Qiao Longfei 已提交
123

124 125 126
2) Soft-label cross-entropy:
    soft_label = 1, Label[i, j] indicates the soft label of class j
    for sample i:
127

128
                Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
129

130
   Please make sure that in this case the summuation of each row of Label
131 132 133 134 135 136
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
137 138 139

Both the input `X` and `Label` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
Q
Qiao Longfei 已提交
140 141 142 143 144 145
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
146
namespace ops = paddle::operators;
147 148 149 150 151
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
            cross_entropy_grad, ops::CrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpKernel<float>);