pd_predictor.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <map>
#include <numeric>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/capi/c_api_internal.h"

using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;
using paddle::ConvertToACPrecision;

extern "C" {

bool PD_PredictorRun(const PD_AnalysisConfig* config, PD_Tensor* inputs,
                     int in_size, PD_Tensor* output_data, int** out_size,
                     int batch_size) {
  auto predictor = paddle::CreatePaddlePredictor(config->config);
  std::vector<paddle::PaddleTensor> in;
  for (int i = 0; i < in_size; ++i) {
    in.emplace_back(inputs->tensor);
  }
  std::vector<paddle::PaddleTensor> out;
  if (predictor->Run(in, &out, batch_size)) {
    int osize = out.size();
    for (int i = 0; i < osize; ++i) {
      output_data[i].tensor = out[i];
    }
    *out_size = &osize;
    return true;
  }
  return false;
}

bool PD_PredictorZeroCopyRun(const PD_AnalysisConfig* config,
                             PD_ZeroCopyData* inputs, int in_size,
                             PD_ZeroCopyData* output, int** out_size) {
  auto predictor = paddle::CreatePaddlePredictor(config->config);
  auto input_names = predictor->GetInputNames();
  PADDLE_ENFORCE_EQ(
      input_names.size(), in_size,
      "The number of input and the number of model's input must match. ");
  for (int i = 0; i < in_size; ++i) {
    auto input_t = predictor->GetInputTensor(inputs[i].name);
    std::vector<int> tensor_shape;
    tensor_shape.assign(inputs[i].shape,
                        inputs[i].shape + inputs[i].shape_size);
    input_t->Reshape(tensor_shape);
    switch (inputs[i].dtype) {
      case PD_FLOAT32:
        input_t->copy_from_cpu(static_cast<float*>(inputs[i].data));
        break;
      case PD_INT32:
        input_t->copy_from_cpu(static_cast<int32_t*>(inputs[i].data));
        break;
      case PD_INT64:
        input_t->copy_from_cpu(static_cast<int64_t*>(inputs[i].data));
        break;
      case PD_UINT8:
        input_t->copy_from_cpu(static_cast<uint8_t*>(inputs[i].data));
        break;
      default:
        CHECK(false) << "Unsupport data type.";
        break;
    }
  }
  CHECK(predictor->ZeroCopyRun());
  auto output_names = predictor->GetOutputNames();
  int osize = output_names.size();
  *out_size = &osize;
  output = new PD_ZeroCopyData[osize];
  for (int i = 0; i < osize; ++i) {
    LOG(INFO) << 1;
    output[i].name = new char[output_names[i].length() + 1];
    snprintf(output[i].name, output_names[i].length() + 1, "%s",
             output_names[i].c_str());
    auto output_t = predictor->GetOutputTensor(output_names[i]);
    output[i].dtype = ConvertToPDDataType(output_t->type());
    std::vector<int> output_shape = output_t->shape();
    output[i].shape = new int[output_shape.size()];
    output[i].shape = output_shape.data();
    output[i].shape_size = output_shape.size();
    switch (output[i].dtype) {
      case PD_FLOAT32: {
        std::vector<float> out_data;
        int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
                                      1, std::multiplies<int>());
        out_data.resize(out_num);
        output_t->copy_to_cpu(out_data.data());
        output[i].data = static_cast<void*>(out_data.data());
      } break;
      case PD_INT32: {
        std::vector<int32_t> out_data;
        int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
                                      1, std::multiplies<int>());
        out_data.resize(out_num);
        output_t->copy_to_cpu(out_data.data());
        output[i].data = static_cast<void*>(out_data.data());
      } break;
      case PD_INT64: {
        std::vector<int64_t> out_data;
        int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
                                      1, std::multiplies<int>());
        out_data.resize(out_num);
        output_t->copy_to_cpu(out_data.data());
        output[i].data = static_cast<void*>(out_data.data());
      } break;
      case PD_UINT8: {
        std::vector<uint8_t> out_data;
        int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
                                      1, std::multiplies<int>());
        out_data.resize(out_num);
        output_t->copy_to_cpu(out_data.data());
        output[i].data = static_cast<void*>(out_data.data());
      } break;
      default:
        CHECK(false) << "Unsupport data type.";
        break;
    }
  }
  return true;
}
}  // extern "C"