test_imperative_data_loader.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import core
import paddle.compat as cpt


def get_random_images_and_labels(image_shape, label_shape):
    image = np.random.random(size=image_shape).astype('float32')
    label = np.random.random(size=label_shape).astype('int64')
    return image, label


def sample_generator_creator(batch_size, batch_num):
    def __reader__():
        for _ in range(batch_num * batch_size):
            image, label = get_random_images_and_labels([784], [1])
            yield image, label

    return __reader__


def sample_list_generator_creator(batch_size, batch_num):
    def __reader__():
        for _ in range(batch_num):
            sample_list = []
            for _ in range(batch_size):
                image, label = get_random_images_and_labels([784], [1])
                sample_list.append([image, label])

            yield sample_list

    return __reader__


def batch_generator_creator(batch_size, batch_num):
    def __reader__():
        for _ in range(batch_num):
            batch_image, batch_label = get_random_images_and_labels(
                [batch_size, 784], [batch_size, 1])
            yield batch_image, batch_label

    return __reader__


class TestDygraphhDataLoader(unittest.TestCase):
    def setUp(self):
        self.batch_size = 8
        self.batch_num = 4
        self.epoch_num = 2
        self.capacity = 2

    def test_single_process_reader(self):
        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, iterable=False, use_multiprocess=False)
            loader.set_sample_generator(
                sample_generator_creator(self.batch_size, self.batch_num),
                batch_size=self.batch_size,
                places=fluid.CPUPlace())
            for _ in range(self.epoch_num):
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    self.assertEqual(image.shape, [self.batch_size, 784])
                    self.assertEqual(label.shape, [self.batch_size, 1])
                    self.assertEqual(relu.shape, [self.batch_size, 784])

    def test_sample_genarator(self):
        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, use_multiprocess=True)
            loader.set_sample_generator(
                sample_generator_creator(self.batch_size, self.batch_num),
                batch_size=self.batch_size,
                places=fluid.CPUPlace())
            for _ in range(self.epoch_num):
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    self.assertEqual(image.shape, [self.batch_size, 784])
                    self.assertEqual(label.shape, [self.batch_size, 1])
                    self.assertEqual(relu.shape, [self.batch_size, 784])

    def test_sample_list_generator(self):
        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, use_multiprocess=True)
            loader.set_sample_list_generator(
                sample_list_generator_creator(self.batch_size, self.batch_num),
                places=fluid.CPUPlace())
            for _ in range(self.epoch_num):
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    self.assertEqual(image.shape, [self.batch_size, 784])
                    self.assertEqual(label.shape, [self.batch_size, 1])
                    self.assertEqual(relu.shape, [self.batch_size, 784])

    def test_batch_genarator(self):
        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, use_multiprocess=True)
            loader.set_batch_generator(
                batch_generator_creator(self.batch_size, self.batch_num),
                places=fluid.CPUPlace())
            for _ in range(self.epoch_num):
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    self.assertEqual(image.shape, [self.batch_size, 784])
                    self.assertEqual(label.shape, [self.batch_size, 1])
                    self.assertEqual(relu.shape, [self.batch_size, 784])


class TestDygraphhDataLoaderWithException(unittest.TestCase):
    def setUp(self):
        self.batch_num = 4
        self.capacity = 2

    def test_not_capacity(self):
        with fluid.dygraph.guard():
            with self.assertRaisesRegexp(ValueError,
                                         "Please give value to capacity."):
                fluid.io.DataLoader.from_generator()

    def test_single_process_with_thread_expection(self):
        def error_sample_genarator(batch_num):
            def __reader__():
                for _ in range(batch_num):
                    yield [[[1, 2], [1]]]

            return __reader__

        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, iterable=False, use_multiprocess=False)
            loader.set_batch_generator(
                error_sample_genarator(self.batch_num), places=fluid.CPUPlace())
            exception = None
            try:
                for _ in loader():
                    print("test_single_process_with_thread_expection")
            except core.EnforceNotMet as ex:
                self.assertIn("Blocking queue is killed",
                              cpt.get_exception_message(ex))
                exception = ex
            self.assertIsNotNone(exception)

    def test_multi_process_with_thread_expection(self):
        def error_sample_genarator(batch_num):
            def __reader__():
                for _ in range(batch_num):
                    yield [[[1, 2], [1]]]

            return __reader__

        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, use_multiprocess=True)
            loader.set_batch_generator(
                error_sample_genarator(self.batch_num), places=fluid.CPUPlace())
            exception = None
            try:
                for _ in loader():
                    print("test_multi_process_with_thread_expection")
            except core.EnforceNotMet as ex:
                self.assertIn("Blocking queue is killed",
                              cpt.get_exception_message(ex))
                exception = ex
            self.assertIsNotNone(exception)


if __name__ == '__main__':
    unittest.main()