jit_kernel_test.cc 24.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17
#include <cmath>    // for exp
T
tensor-tang 已提交
18
#include <cstring>  // for memcpy
T
tensor-tang 已提交
19 20 21 22 23 24
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

T
tensor-tang 已提交
25 26 27 28 29 30 31 32
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
33 34
constexpr int repeat = 20000;

T
tensor-tang 已提交
35 36 37 38 39 40 41
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
T
tensor-tang 已提交
42 43
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
T
tensor-tang 已提交
44 45 46 47 48 49 50 51
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
void vrelu_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0.f ? x[i] : 0.f;
  }
}

#if defined __AVX__ || defined __AVX2__
void vrelu_intri8(const int n, const float* x, float* y) {
  __m256 tmp = _mm256_loadu_ps(x);
  tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());
  _mm256_storeu_ps(y, tmp);
}
#endif

TEST(JitKernel, vrelu) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -10.f, 1.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vrelu_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vrelu_intri8(d, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(x_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void vaddbias_ref(const int n, const float a, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] + a;
  }
}

TEST(JitKernel, vaddbias) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float a = 2.f;
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vaddbias_ref(d, a, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
130
      ker->Compute(a, x_data, ztgt_data);
T
tensor-tang 已提交
131 132 133 134 135 136 137 138 139 140 141
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155
void vexp_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
  paddle::platform::dynload::vsExp(n, x, y);
}
#endif

TEST(JitKernel, vexp) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
156
  for (int d : {7, 8, 15, 16, 30, 128, 256}) {
T
tensor-tang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_mkl(d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
181
      ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
182 183 184 185 186 187 188 189 190 191 192 193
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    }
  }
}

inline float _sigmoid(float x) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  float tmp = (x < min) ? min : ((x > max) ? max : x);
  return 1.f / (1.f + std::exp(-tmp));
}

void vsigmoid_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _sigmoid(x[i]);
  }
}

void vsigmoid_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
    const int n, const float* x, float* y) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = 0.f - y[i];
  }
T
tensor-tang 已提交
221
  vexp->Compute(y, y);
222 223 224 225 226 227 228
  for (int i = 0; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
}

TEST(JitKernel, vsigmoid) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
229
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vexp =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_better(vexp, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
252
      ker->Compute(x_data, ztgt_data);
253 254 255
    }
    auto ttgte = GetCurrentUS();

T
tensor-tang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

inline float _tanh(float x) { return 2.f * _sigmoid(2.f * x) - 1.f; }

void vtanh_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _tanh(x[i]);
  }
}

void vtanh_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VScalKernel<float>>& vscal,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddBiasKernel<float>>&
        vaddbias,
    const int n, const float* x, float* y) {
T
tensor-tang 已提交
283
  vscal->Compute(2.f, x, y);
T
tensor-tang 已提交
284
  vsigmoid->Compute(y, y);
T
tensor-tang 已提交
285 286
  vscal->Compute(2.f, y);
  vaddbias->Compute(-1.f, y, y);
T
tensor-tang 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
}

TEST(JitKernel, vtanh) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vscal =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const auto& vsigmoid =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vaddbias =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_better(vscal, vsigmoid, vaddbias, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
318
      ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
319 320 321
    }
    auto ttgte = GetCurrentUS();

322 323 324 325 326
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
T
tensor-tang 已提交
327 328 329 330
    }
  }
}

T
tensor-tang 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
void lstm_ctht_ref(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid_3d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp_1,
    const int d, float* gates, const float* ct_1, float* ct, float* ht) {
  vsigmoid_3d->Compute(gates + d, gates + d);
  vtanh_d->Compute(gates, gates);
  const float *i = gates + d, *f = gates + d * 2, *o = gates + d * 3;
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  for (int k = 0; k < d; ++k) {
    // C_t = C_t-1 * fgated + cand_gated * igated
    ct[k] = ct_1[k] * f[k] + gates[k] * i[k];
    // H_t = act_cell(C_t) * ogated
    float tmp = ct[k] * 2;
    tmp = 0.f - ((tmp < min) ? min : ((tmp > max) ? max : tmp));
    vexp_1->Compute(&tmp, &tmp);
    tmp = 2.f / (1.f + tmp) - 1.f;
    ht[k] = tmp * o[k];
  }
}

void lstm_ctht_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid_3d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VMulKernel<float>>& vmul_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd_d,
    const int d, float* gates, const float* ct_1, float* ct, float* ht) {
  int d2 = d * 2;
  vsigmoid_3d->Compute(gates + d, gates + d);
  vtanh_d->Compute(gates, gates);
  vmul_d->Compute(gates, gates + d, gates + d);
  vmul_d->Compute(ct_1, gates + d2, gates + d2);
  vadd_d->Compute(gates + d, gates + d2, ct);
  /* H_t = act_cell(C_t) * ogated */
  vtanh_d->Compute(ct, gates + d2);
  vmul_d->Compute(gates + d2, gates + d * 3, ht);
}

TEST(JitKernel, lstm) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100}) {
    int d4 = d * 4;
    int d3 = d * 3;
    std::vector<float> x(d4), xref(d4);
    std::vector<float> ct_1(d), ct_tgt(d), ht_tgt(d);
    std::vector<float> ct_ref(d), ht_ref(d);
    RandomVec<float>(d4, x.data(), -2.f, 2.f);
    RandomVec<float>(d, ct_1.data(), -2.f, 2.f);
    memcpy(xref.data(), x.data(), sizeof(float) * d4);
    std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
    const auto& ker =
        jit::KernelPool::Instance()
T
tensor-tang 已提交
393
            .template Get<jit::LSTMKernel<float>, const std::string&,
T
tensor-tang 已提交
394
                          const std::string&, const std::string&>(
T
tensor-tang 已提交
395
                act_gate, act_cand, act_cell, d, false);
T
tensor-tang 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    // below kernels are used to compute refer
    const auto& vsigmoid_3d =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(
            d3);
    const auto& vtanh_d =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vexp_1 =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(1);
    const auto& vmul_d =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const auto& vadd_d =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);

    float* x_data = x.data();
    float* xref_data = xref.data();
    const float* ct_1_data = ct_1.data();
    float* ct_tgt_data = ct_tgt.data();
    float* ht_tgt_data = ht_tgt.data();
    float* ct_ref_data = ct_ref.data();
    float* ht_ref_data = ht_ref.data();
    // compute once to check correctness
    lstm_ctht_ref(vsigmoid_3d, vtanh_d, vexp_1, d, xref_data, ct_1_data,
                  ct_ref_data, ht_ref_data);
    ker->ComputeCtHt(x_data, ct_1_data, ct_tgt_data, ht_tgt_data);
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ct_tgt_data[i], ct_ref_data[i], 1e-3);
      EXPECT_NEAR(ht_tgt_data[i], ht_ref_data[i], 1e-3);
    }

    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      lstm_ctht_better(vsigmoid_3d, vtanh_d, vmul_d, vadd_d, d, xref_data,
                       ct_1_data, ct_ref_data, ht_ref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      lstm_ctht_ref(vsigmoid_3d, vtanh_d, vexp_1, d, xref_data, ct_1_data,
                    ct_ref_data, ht_ref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->ComputeCtHt(x_data, ct_1_data, ct_tgt_data, ht_tgt_data);
    }
    auto ttgte = GetCurrentUS();
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, better(jit) takes: " << (tmkle - tmkls) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
  }
}

T
tensor-tang 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
void vscal_ref(const int n, const float a, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}
void vscal_inp_ref(const int n, const float a, float* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(y, tmp);
}
void vscal_inp_intri8(const int n, const float a, float* x) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(x, tmp);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vscal_inp_mkl(const int n, const float a, float* x) {
  paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
#endif

TEST(JitKernel, vscal) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    std::memcpy(y.data(), x.data(), sizeof(float) * d);
    float a = 2.f;
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const float* x_data = x.data();
    float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_ref(d, a, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto trefs1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_ref(d, a, y_data);
    }
    auto trefe1 = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_mkl(d, a, y_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_intri8(d, a, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      auto si2 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_inp_intri8(d, a, y_data);
      }
      auto si3 = GetCurrentUS();
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
              << " us, inplace: " << (si3 - si2) / repeat;
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
533
      ker->Compute(a, x_data, ztgt_data);
T
tensor-tang 已提交
534 535 536 537
    }
    auto ttgte = GetCurrentUS();
    auto ttgts1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
538
      ker->Compute(a, y_data);
T
tensor-tang 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    }
    auto ttgte1 = GetCurrentUS();
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, inplace takes: " << (trefe1 - trefs1) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl inplace takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat
            << "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}
T
tensor-tang 已提交
555

T
tensor-tang 已提交
556 557 558 559 560 561
void vmul_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
562
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
563
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
564 565 566 567 568 569 570
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
571

T
tensor-tang 已提交
572 573 574
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
575
}
T
tensor-tang 已提交
576
#endif
T
tensor-tang 已提交
577

T
tensor-tang 已提交
578 579
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
580
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
T
tensor-tang 已提交
581 582 583 584 585 586 587 588 589 590
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
591
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
592
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
593
      vmul_ref(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
594
    }
T
tensor-tang 已提交
595
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
596

T
tensor-tang 已提交
597 598
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
599
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
600
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
601
    }
T
tensor-tang 已提交
602 603
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
604

T
tensor-tang 已提交
605 606 607 608
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
609
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
610 611
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
612 613 614 615 616 617
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
618
      ker->Compute(x_data, y_data, ztgt_data);
T
tensor-tang 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

void vadd_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_add_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif

TEST(JitKernel, vadd) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_ref(d, x_data, y_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_mkl(d, x_data, y_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vadd_intri8(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
691 692 693 694
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

T
tensor-tang 已提交
695 696
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
697
      ker->Compute(x_data, y_data, ztgt_data);
T
tensor-tang 已提交
698 699 700 701
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
702
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
703
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
704
#else
T
tensor-tang 已提交
705
            << " us, "
T
tensor-tang 已提交
706
#endif
T
tensor-tang 已提交
707
            << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
708 709 710 711 712 713
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
714 715 716 717
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
T
tensor-tang 已提交
718
  const auto& plstm1 =
T
tensor-tang 已提交
719
      jit::KernelPool::Instance()
T
tensor-tang 已提交
720
          .template Get<jit::LSTMKernel<float>, const std::string&,
T
tensor-tang 已提交
721
                        const std::string&, const std::string&>(
T
tensor-tang 已提交
722
              act_gate, act_cand, act_cell, frame_size, false);
T
tensor-tang 已提交
723
  const auto& plstm2 =
T
tensor-tang 已提交
724
      jit::KernelPool::Instance()
T
tensor-tang 已提交
725
          .template Get<jit::LSTMKernel<float>, const std::string&,
T
tensor-tang 已提交
726
                        const std::string&, const std::string&>(
T
tensor-tang 已提交
727 728 729 730 731 732 733
              act_gate, act_cand, act_cell, frame_size, false);
  const auto& peephole =
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, const std::string&,
                        const std::string&, const std::string&>(
              act_gate, act_cand, act_cell, frame_size, true);
  EXPECT_TRUE(plstm1 != peephole);
T
tensor-tang 已提交
734

T
tensor-tang 已提交
735
  const auto& pvmul_f =
T
tensor-tang 已提交
736
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
737 738
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
739

T
tensor-tang 已提交
740
  const auto& pvmul_d =
T
tensor-tang 已提交
741
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
742 743
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
T
tensor-tang 已提交
744 745

  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulf4");
T
tensor-tang 已提交
746
  EXPECT_EQ(pvmul_f, pvmul_from_key);
T
tensor-tang 已提交
747 748
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulf5");
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
749
}