device_context.cc 14.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

Q
qijun 已提交
24 25 26
namespace paddle {
namespace platform {

D
dzhwinter 已提交
27 28
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
29
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
30 31 32 33 34 35
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
36
  return it->second.get().get();
D
dzhwinter 已提交
37 38
}

39 40 41 42 43 44 45 46 47 48 49
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
50 51
}

D
dzhwinter 已提交
52 53 54
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
55
  std::set<Place> set;
Y
Yu Yang 已提交
56 57 58 59 60 61
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
62
#ifdef PADDLE_WITH_MKLDNN
63
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
64
#else
65
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
66
#endif
Y
Yu Yang 已提交
67
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
68
#ifdef PADDLE_WITH_CUDA
69
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
70 71
#else
      PADDLE_THROW(
D
dzhwinter 已提交
72
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
73
          "option");
C
chengduoZH 已提交
74 75 76
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
77 78
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
79 80 81 82
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
83 84 85 86 87
#endif
    }
  }
}

88 89 90 91 92 93 94
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;

#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place, const cudaStream_t& stream) {
  PADDLE_ENFORCE(platform::is_gpu_place(place));
  auto place_stream = std::make_pair(place, stream);
95 96 97 98 99 100 101 102 103
  {
    std::unique_lock<std::mutex> lock(mtx_);
    if (!device_allocator_.count(place_stream)) {
      device_allocator_[place_stream].reset(new TemporaryAllocator(place));
      device_allocator_[place_stream]->SetCallback([stream]() {
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
        PADDLE_ENFORCE(cudaGetLastError());
      });
    }
104
  }
105
  return *device_allocator_.at(place_stream);
106 107 108 109 110
}

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CUDADeviceContext& dev_ctx) {
111 112 113 114
  auto place_stream = std::make_pair(dev_ctx.GetPlace(), dev_ctx.stream());
  if (device_allocator_.count(place_stream)) {
    return *device_allocator_.at(place_stream);
  }
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  return Get(dev_ctx.GetPlace(), dev_ctx.stream());
}
#endif

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CPUDeviceContext& dev_ctx) {
  return cpu_allocator_;
}

platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
  return cpu_allocator_;
}

131 132 133 134
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
135
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
136 137 138 139 140 141 142
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
143
Place CPUDeviceContext::GetPlace() const { return place_; }
144

145
#ifdef PADDLE_WITH_CUDA
146

Q
init  
qijun 已提交
147 148 149 150 151 152 153
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
154
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
155 156 157 158 159 160 161 162 163 164 165 166
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
167 168 169
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
Y
Yu Yang 已提交
170 171
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
172
    void* retv = buf->ptr();
S
sneaxiy 已提交
173 174 175 176
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
177
    return retv;
Q
init  
qijun 已提交
178 179
  }

S
sneaxiy 已提交
180 181 182 183 184 185
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
206
  CUDAPlace place_;
Q
init  
qijun 已提交
207 208
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
209
  mutable void* scratch_;
Q
init  
qijun 已提交
210
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
211
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
212
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
213 214
};

S
sneaxiy 已提交
215
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
216
    : workspace_(nullptr), stream_(stream), place_(place) {
S
sneaxiy 已提交
217 218 219
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
220

S
sneaxiy 已提交
221 222
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
223
}
224

S
sneaxiy 已提交
225
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
226
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
227
    return;
Y
Yu Yang 已提交
228
  }
S
sneaxiy 已提交
229 230 231
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
232
    workspace_.reset();
233
  }
Y
Yu Yang 已提交
234 235
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                     paddle::memory::Allocator::kScratchpad);
S
sneaxiy 已提交
236
}
237 238 239

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
240
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
241 242 243
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
244 245 246
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
247
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
248 249 250 251 252 253 254 255 256
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }

D
dzhwinter 已提交
257
  if (dynload::HasCUDNN()) {
258
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
259
  }
S
sneaxiy 已提交
260

C
chengduo 已提交
261 262 263
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

264 265
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
266
                          << ", Driver API Version: " << driver_version_ / 1000
267
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
268 269 270
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
271 272 273 274
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
                          << (cudnn_dso_ver % 100) / 10 << ".";
S
sneaxiy 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

  {
    // Check CUDA/CUDNN version compatiblity
    auto local_cuda_version = runtime_version_ / 100;
    auto compile_cuda_version = CUDA_VERSION / 100;
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
295
      if (local_cudnn_version < compile_cudnn_version) {
S
sneaxiy 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
    }
  }

S
sneaxiy 已提交
309
  callback_manager_.reset(new StreamCallbackManager(stream_));
310 311 312 313
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
314
  Wait();
S
sneaxiy 已提交
315
  WaitStreamCallback();
316 317
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
318 319
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
320
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
321 322
}

L
liaogang 已提交
323
Place CUDADeviceContext::GetPlace() const { return place_; }
324

L
liaogang 已提交
325
void CUDADeviceContext::Wait() const {
326 327
  auto& allocator =
      DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
328
  allocator.Release([=]() {
329 330 331
    PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
    PADDLE_ENFORCE(cudaGetLastError());
  });
332 333
}

K
Kexin Zhao 已提交
334
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
335
  return compute_capability_;
K
Kexin Zhao 已提交
336 337
}

338
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
339
  return multi_process_ * max_threads_per_mp_;
340 341
}

342 343 344 345
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

346 347
bool CUDADeviceContext::tensor_core_available() const {
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
348 349
}

350 351 352 353
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
354 355
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
356
}
357

358
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
359

C
chengduoZH 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
374
#endif
Q
qijun 已提交
375

T
tensor-tang 已提交
376 377
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
378 379 380
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
381 382
}

S
Sylwester Fraczek 已提交
383 384 385 386 387 388 389 390
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

391 392
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
393 394 395 396
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
397

398
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
399

400 401 402 403 404 405 406
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
407
  } else {
408
    pBlob = map_it->second;
409
  }
T
tensor-tang 已提交
410

411 412 413 414 415 416 417 418 419 420
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
421
  return;
T
tensor-tang 已提交
422 423
}

424 425
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
426 427
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
428

429
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
430

431 432 433 434 435 436 437 438 439 440 441
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
442

443 444
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
445 446 447 448
}

#endif

Q
qijun 已提交
449
}  // namespace platform
Q
qijun 已提交
450
}  // namespace paddle