fusion_conv_inception_op.cu 12.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"

DECLARE_uint64(conv_workspace_size_limit);

namespace paddle {
namespace operators {

24
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;

using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto filters = ctx.MultiInput<framework::Tensor>("Filter");
    auto bias = ctx.MultiInput<framework::Tensor>("Bias");

    auto* output = ctx.Output<Tensor>("Output");
    auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");

    const std::string pool_type = ctx.Attr<std::string>("pooling_type");
    const std::string activation = ctx.Attr<std::string>("activation");
    const bool exclusive = ctx.Attr<bool>("exclusive");

    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());

    DataLayout layout = DataLayout::kNCHW;
64
    std::vector<int> in_dim = framework::vectorize<int>(input->dims());
Q
qingqing01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    // ------------------- cudnn descriptors ---------------------
    PoolingMode pooling_mode;
    if (pool_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : (PoolingMode::kAverageInclusive);
    }
    std::vector<int> k0x0 = {0, 0};
    std::vector<int> k1x1 = {1, 1};
    std::vector<int> k1x1_2 = {1, 1};
    std::vector<int> k3x3 = {3, 3};
    ScopedPoolingDescriptor pool_desc;
    ScopedActivationDescriptor act_desc;
    ScopedTensorDescriptor out_pool_desc;
    ScopedTensorDescriptor input_desc;
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
86
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
87
    cudnnTensorDescriptor_t pool_out_desc = out_pool_desc.descriptor<T>(
88
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
89 90 91 92 93 94 95 96 97

    cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
    cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
    cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
    cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
    cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
    cudnnConvolutionDescriptor_t* conv_desc =
        new cudnnConvolutionDescriptor_t[4];
    for (int i = 0; i < 4; ++i) {
98
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
99
          platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
100
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
101
          platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
102
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
103
          platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
104
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
105
          platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
106
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
          platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
    }

    std::vector<std::vector<int>> filter_dims;
    std::vector<std::vector<int>> bias_dims;
    std::vector<std::vector<int>> in_dims;
    std::vector<std::vector<int>> out_dims;
    std::vector<std::vector<int>> in_strides;
    std::vector<std::vector<int>> out_strides;
    std::vector<std::vector<int>> bias_strides;

    cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
    int n = in_dim[0];
    int h = in_dim[2];
    int w = in_dim[3];
    int oc = output->dims()[1];

    cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
                                       ? CUDNN_DATA_DOUBLE
                                       : CUDNN_DATA_FLOAT;

    for (int i = 0; i < 4; ++i) {
129
      filter_dims.push_back(framework::vectorize<int>(filters[i]->dims()));
130
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetFilterNdDescriptor(
Q
qingqing01 已提交
131 132 133
          filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
      bias_dims.push_back({1, filter_dims[i][0], 1, 1});
      bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
134
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
135 136 137 138 139 140 141 142
          bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
          bias_strides[i].data()));
      in_dims.push_back({n, filter_dims[i][1], h, w});
      out_dims.push_back({n, filter_dims[i][0], h, w});
      in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
      out_strides.push_back({oc * h * w, h * w, w, 1});

      if (i < 2) {
143 144 145 146
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
147
      } else {
148 149 150 151
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
152
      }
153 154 155
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(conv_desc[i],
                                                         CUDNN_DEFAULT_MATH));
Q
qingqing01 已提交
156 157 158 159 160
    }
    in_dims[2][1] *= 2;
    in_strides[2][0] = oc * h * w;
    out_strides[2][0] = filter_dims[2][0] * h * w;  // this out is continuous.
    in_strides[3][0] = filter_dims[2][0] * h * w;
161
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
162 163 164 165 166 167
        platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));

    cudnnConvolutionFwdAlgo_t algo[4];
    auto handle = dev_ctx.cudnn_handle();
    size_t workspace_size_in_bytes = 0;  // final workspace to allocate.

168
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
169 170
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
171
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
172 173 174 175 176
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    for (int i = 0; i < 4; ++i) {
177
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
178
          in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
179
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
180 181
          out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
          out_strides[i].data()));
182 183 184 185 186 187

      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
188
      PADDLE_ENFORCE_CUDA_SUCCESS(
189
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
190
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
191 192 193
              kNUM_CUDNN_FWD_ALGS, &perf_count, perf_results.get()));
      algo[i] = (perf_results.get())[best_algo_idx].algo;

194 195 196 197
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
              algo[i], &tmp_size));
198

Q
qingqing01 已提交
199 200 201 202 203 204 205 206 207 208 209 210
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    int oc0 = filter_dims[0][0];
    int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
    int oc3 = filter_dims[3][0];
    int oc2 = oc - oc0 - oc1 - oc3;

    // branch1: pool + 1x1 conv
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
211
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnPoolingForward(
Q
qingqing01 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        pool_out_desc, temp_data));

    std::vector<const void*> in_datas;
    in_datas.push_back(static_cast<const void*>(temp_data));
    in_datas.push_back(static_cast<const void*>(input_data));
    in_datas.push_back(
        static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
    T* temp2_data = temp_outs[1]->mutable_data<T>(
        framework::make_ddim(out_dims[2]), ctx.GetPlace());
    in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));

    std::vector<void*> out_datas;
    out_datas.push_back(static_cast<void*>(output_data));
    out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
    out_datas.push_back(static_cast<void*>(temp2_data));
    out_datas.push_back(
        static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));

    for (int i = 0; i < 4; ++i) {
C
chengduo 已提交
232
      auto func = [&](void* cudnn_workspace) {
233 234 235 236 237 238 239 240
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
                static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
                algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
                out_desc[i], out_datas[i], bias_desc[i],
                static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
                out_desc[i], out_datas[i]));
C
chengduo 已提交
241 242 243
      };
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
      workspace_handle.RunFunc(func, workspace_size_in_bytes);
Q
qingqing01 已提交
244 245 246 247
    }

    cudnnTensorDescriptor_t x_desc;
    cudnnTensorDescriptor_t y_desc;
248 249 250 251 252
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
253
        x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
254
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
255
        y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
256
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnTransformTensor(
Q
qingqing01 已提交
257 258 259 260 261
        handle, CudnnDataType<T>::kOne(), x_desc,
        static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
        y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));

    for (int i = 0; i < 4; ++i) {
262
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
263
          platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
264
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
265
          platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
266
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
267
          platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
268
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
269
          platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
270
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
271 272
          platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
    }
273 274 275 276
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
Q
qingqing01 已提交
277 278 279 280 281 282 283
  }
};
#endif

}  // namespace operators
}  // namespace paddle

284
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
285 286 287 288 289
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
                        ops::CUDNNConvInceptionFusionOpKernel<float>,
                        ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif