test_cuda_random_seed.py 7.3 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""

import os
import unittest

import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core
23 24
import shutil
import tempfile
Y
yaoxuefeng 已提交
25 26


27 28
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "Only test cuda Random Generator")
Y
yaoxuefeng 已提交
29 30 31 32 33 34
class TestGeneratorSeed(unittest.TestCase):
    """
    Test cases for cpu generator seed.
    """

    def test_gen_dropout_dygraph(self):
C
cnn 已提交
35
        gen = paddle.seed(12343)
Y
yaoxuefeng 已提交
36 37 38 39 40 41

        fluid.enable_dygraph()

        gen.manual_seed(111111111)
        st = paddle.get_cuda_rng_state()

42 43 44 45 46 47 48 49 50 51 52 53
        x = fluid.layers.uniform_random([2, 10],
                                        dtype="float32",
                                        min=0.0,
                                        max=1.0)
        x_again = fluid.layers.uniform_random([2, 10],
                                              dtype="float32",
                                              min=0.0,
                                              max=1.0)
        x_third = fluid.layers.uniform_random([2, 10],
                                              dtype="float32",
                                              min=0.0,
                                              max=1.0)
Y
yaoxuefeng 已提交
54 55 56 57 58 59 60
        print("x: {}".format(x.numpy()))
        print("x_again: {}".format(x_again.numpy()))
        x = x + x_again + x_third
        y = fluid.layers.dropout(x, 0.5)

        paddle.set_cuda_rng_state(st)

61 62 63 64 65 66 67 68 69 70 71 72
        x1 = fluid.layers.uniform_random([2, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
        x1_again = fluid.layers.uniform_random([2, 10],
                                               dtype="float32",
                                               min=0.0,
                                               max=1.0)
        x1_third = fluid.layers.uniform_random([2, 10],
                                               dtype="float32",
                                               min=0.0,
                                               max=1.0)
Y
yaoxuefeng 已提交
73 74 75 76 77 78 79
        x1 = x1 + x1_again + x1_third
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
80
            np.testing.assert_allclose(y_np, y1_np, rtol=1e-05)
Y
yaoxuefeng 已提交
81 82 83 84 85

    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

86 87 88 89 90 91 92
        st = paddle.get_cuda_rng_state()
        x1 = paddle.randn([120], dtype="float32")
        paddle.set_cuda_rng_state(st)
        x2 = paddle.randn([120], dtype="float32")
        paddle.set_cuda_rng_state(st)
        x3 = paddle.randn([120], dtype="float32")

Y
yaoxuefeng 已提交
93 94 95 96 97 98
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
99 100
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x2_np, x3_np, rtol=1e-05)
Y
yaoxuefeng 已提交
101 102 103 104 105 106

    def test_generator_randint_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

107
        paddle.seed(12312321111)
Y
yaoxuefeng 已提交
108
        x = paddle.randint(low=10, shape=[10], dtype="int32")
109
        st1 = paddle.get_cuda_rng_state()
Y
yaoxuefeng 已提交
110
        x1 = paddle.randint(low=10, shape=[10], dtype="int32")
111
        paddle.set_cuda_rng_state(st1)
Y
yaoxuefeng 已提交
112
        x2 = paddle.randint(low=10, shape=[10], dtype="int32")
C
cnn 已提交
113
        paddle.seed(12312321111)
Y
yaoxuefeng 已提交
114 115 116 117 118 119 120 121
        x3 = paddle.randint(low=10, shape=[10], dtype="int32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> randint dygraph >>>>>>>")
122
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
Y
yaoxuefeng 已提交
123 124 125 126

    def test_gen_TruncatedNormal_initializer(self):
        fluid.disable_dygraph()

C
cnn 已提交
127
        gen = paddle.seed(123123143)
Y
yaoxuefeng 已提交
128 129 130 131 132 133 134 135 136 137 138
        cur_state = paddle.get_cuda_rng_state()

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[2, 10])
            result_1 = fluid.layers.fc(
                input=x,
                size=10,
139 140
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0,
                                                             scale=2.0))
Y
yaoxuefeng 已提交
141 142 143
            result_2 = fluid.layers.fc(
                input=x,
                size=10,
144 145
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0,
                                                             scale=2.0))
Y
yaoxuefeng 已提交
146 147 148 149 150 151 152

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

C
cnn 已提交
153
        paddle.seed(123123143)
Y
yaoxuefeng 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
        with fluid.program_guard(train_program, startup_program):
            exe.run(startup_program)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        out1_res1 = np.array(out1[0])
        out1_res2 = np.array(out1[1])
        out2_res1 = np.array(out2[0])
        out2_res2 = np.array(out2[1])

        if core.is_compiled_with_cuda():
            print(">>>>>>> truncated normal static >>>>>>>")
167 168
            np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
            np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
Y
yaoxuefeng 已提交
169 170
            self.assertTrue(not np.allclose(out1_res2, out1_res1))

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def test_generator_pickle(self):
        output_dir = tempfile.mkdtemp()
        random_file = os.path.join(output_dir, "random.pdmodel")

        fluid.enable_dygraph()
        x0 = paddle.randn([120], dtype="float32")

        st = paddle.get_cuda_rng_state()
        st_dict = {"random_state": st}
        print("state: ", st[0])

        paddle.save(st_dict, random_file)
        x1 = paddle.randn([120], dtype="float32")

        lt_dict = paddle.load(random_file)
        st = lt_dict["random_state"]

        paddle.set_cuda_rng_state(st)
        x2 = paddle.randn([120], dtype="float32")

        lt_dict = paddle.load(random_file)
        st = lt_dict["random_state"]
        paddle.set_cuda_rng_state(st)
        x3 = paddle.randn([120], dtype="float32")

        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        print(">>>>>>> gaussian random dygraph state load/save >>>>>>>")
        np.testing.assert_equal(x1_np, x2_np)
        np.testing.assert_equal(x1_np, x2_np)

        shutil.rmtree(output_dir)

Y
yaoxuefeng 已提交
206 207 208

if __name__ == "__main__":
    unittest.main()