analyzer_bert_tester.cc 6.5 KB
Newer Older
F
fuchang01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
F
fuchang01 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

namespace paddle {
namespace inference {

using paddle::PaddleTensor;
using paddle::contrib::AnalysisConfig;

template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
  (*ss) >> (*t);
}

template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
  *t = ss->str();
}

// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
  std::stringstream ss;
  T t;
  for (auto c : line) {
    if (c != sep) {
      ss << c;
    } else {
      GetValueFromStream<T>(&ss, &t);
      v->push_back(std::move(t));
      ss.str({});
      ss.clear();
    }
  }

  if (!ss.str().empty()) {
    GetValueFromStream<T>(&ss, &t);
    v->push_back(std::move(t));
    ss.str({});
    ss.clear();
  }
}

template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
  std::vector<std::string> data;
  Split(field, ':', &data);
  if (data.size() < 2) return false;

  std::string shape_str = data[0];

  std::vector<int> shape;
  Split(shape_str, ' ', &shape);

  std::string mat_str = data[1];

  std::vector<T> mat;
  Split(mat_str, ' ', &mat);

  tensor->shape = shape;
  auto size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  tensor->data.Resize(size);
  std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
  tensor->dtype = GetPaddleDType<T>();

  return true;
}

// Parse input tensors from string
bool ParseLine(const std::string &line,
               std::vector<paddle::PaddleTensor> *tensors) {
  std::vector<std::string> fields;
  Split(line, ';', &fields);

  if (fields.size() < 5) return false;

  tensors->clear();
  tensors->reserve(5);

  int i = 0;
  // src_id
  paddle::PaddleTensor src_id;
  ParseTensor<int64_t>(fields[i++], &src_id);
  tensors->push_back(src_id);

  // pos_id
  paddle::PaddleTensor pos_id;
  ParseTensor<int64_t>(fields[i++], &pos_id);
  tensors->push_back(pos_id);

  // segment_id
  paddle::PaddleTensor segment_id;
  ParseTensor<int64_t>(fields[i++], &segment_id);
  tensors->push_back(segment_id);

  // self_attention_bias
  paddle::PaddleTensor self_attention_bias;
  ParseTensor<float>(fields[i++], &self_attention_bias);
  tensors->push_back(self_attention_bias);

  // next_segment_index
  paddle::PaddleTensor next_segment_index;
  ParseTensor<int64_t>(fields[i++], &next_segment_index);
  tensors->push_back(next_segment_index);

  return true;
}

// Print outputs to log
void PrintOutputs(const std::vector<paddle::PaddleTensor> &outputs) {
  LOG(INFO) << "example_id\tcontradiction\tentailment\tneutral";

  for (size_t i = 0; i < outputs.front().data.length(); i += 3) {
    LOG(INFO) << (i / 3) << "\t"
              << static_cast<float *>(outputs.front().data.data())[i] << "\t"
              << static_cast<float *>(outputs.front().data.data())[i + 1]
              << "\t"
              << static_cast<float *>(outputs.front().data.data())[i + 2];
  }
}

bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
  if (FLAGS_infer_data.empty()) {
    LOG(ERROR) << "please set input data path";
    return false;
  }

  std::ifstream fin(FLAGS_infer_data);
  std::string line;
159
  int sample = 0;
F
fuchang01 已提交
160

161
  // The unit-test dataset only have 10 samples, each sample have 5 feeds.
F
fuchang01 已提交
162 163
  while (std::getline(fin, line)) {
    std::vector<paddle::PaddleTensor> feed_data;
164 165 166 167
    ParseLine(line, &feed_data);
    inputs->push_back(std::move(feed_data));
    sample++;
    if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
F
fuchang01 已提交
168
  }
169
  LOG(INFO) << "number of samples: " << sample;
F
fuchang01 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

  return true;
}

void SetConfig(contrib::AnalysisConfig *config) {
  config->SetModel(FLAGS_infer_model);
}

void profile(bool use_mkldnn = false) {
  contrib::AnalysisConfig config;
  SetConfig(&config);

  if (use_mkldnn) {
    config.EnableMKLDNN();
  }

  std::vector<PaddleTensor> outputs;
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
                 inputs, &outputs, FLAGS_num_threads);
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
TEST(Analyzer_bert, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_bert, profile_mkldnn) { profile(true); }
#endif

// Check the fuse status
TEST(Analyzer_bert, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  LOG(INFO) << "num_ops: " << num_ops;
}

// Compare result of NativeConfig and AnalysisConfig
F
fuchang01 已提交
210
void compare(bool use_mkldnn = false) {
211 212 213 214 215
  AnalysisConfig cfg;
  SetConfig(&cfg);
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
F
fuchang01 已提交
216 217 218 219

  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  CompareNativeAndAnalysis(
220
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
F
fuchang01 已提交
221 222
}

223
TEST(Analyzer_bert, compare) { compare(); }
F
fuchang01 已提交
224
#ifdef PADDLE_WITH_MKLDNN
225
TEST(Analyzer_bert, compare_mkldnn) { compare(true /* use_mkldnn */); }
F
fuchang01 已提交
226
#endif
227 228 229 230 231 232 233 234 235 236 237 238 239 240

// Compare Deterministic result
// TODO(luotao): Since each unit-test on CI only have 10 minutes, cancel this to
// decrease the CI time.
// TEST(Analyzer_bert, compare_determine) {
//   AnalysisConfig cfg;
//   SetConfig(&cfg);
//
//   std::vector<std::vector<PaddleTensor>> inputs;
//   LoadInputData(&inputs);
//   CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config
//   *>(&cfg),
//                        inputs);
// }
F
fuchang01 已提交
241 242
}  // namespace inference
}  // namespace paddle