parameter_server_optimizer.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle import fluid
from .meta_optimizer_base import MetaOptimizerBase
M
MrChengmo 已提交
16
from ..base.private_helper_function import wait_server_ready
17 18 19 20
from paddle.fluid import core
import subprocess
import re
import platform
21 22


23
class ParameterServerOptimizer(MetaOptimizerBase):
24
    def __init__(self, optimizer):
25
        super(ParameterServerOptimizer, self).__init__(optimizer)
26 27 28 29 30 31 32 33 34 35
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

    def _is_graph_out(self):
        return False

    def _can_apply(self):
        if self.role_maker._is_collective:
            return False
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        return True if k_steps >= 0 else False

    def _get_distributed_strategy(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        strategy = None

        if not self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if self.user_defined_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def _build_trainer_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker

        _main = compiled_config.origin_main_program.clone()
        _startup = compiled_config.origin_startup_program.clone()

        if not compiled_config.is_geo_mode():
            # for main program
            _main = worker.delete_optimizer_pass(_main, compiled_config)
            _main = worker.distributed_ops_pass(_main, compiled_config)
            _main = worker.append_send_ops_pass(_main, compiled_config)

            # for startup program
            _startup = worker.fake_init_ops_pass(_startup, compiled_config)
            _startup = worker.init_from_server_pass(_startup, compiled_config)
            _startup = worker.delet_extra_optimizes_pass(_startup,
                                                         compiled_config)
77

M
MrChengmo 已提交
78 79
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)
80 81 82 83 84 85 86 87 88 89 90 91 92 93
            # for heter program
            if self.role_maker._is_heter_parameter_server_mode:
                from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker
                if self.role_maker._is_heter_worker():
                    # for heter worker
                    _main = heter_worker.split_heter_worker_ops_pass(
                        _main, compiled_config)
                else:
                    # for default worker
                    _main = heter_worker.split_trainer_ops_pass(_main,
                                                                compiled_config)
                # for startup change
                _startup = heter_worker.delete_startup_useless_ops_var_pass(
                    _startup, _main, compiled_config)
94 95 96
        else:
            _main = worker.append_send_ops_pass(_main, compiled_config)
            _startup = _startup
M
MrChengmo 已提交
97 98 99 100 101 102 103 104 105 106
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)

        # for trainer wait server ready
        wait_server_ready(self.role_maker._get_pserver_endpoints())

        # for ps-heter mode, wait heter worker ready
        if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker(
        ):
            wait_server_ready(self.role_maker._get_heter_worker_endpoints())
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

        return _main, _startup

    def _build_pserver_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server

        _main = fluid.Program()
        _startup = fluid.Program()

        if not compiled_config.is_geo_mode():
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)

            if not compiled_config.is_sync_mode():
                _main = server.delete_unused_in_main_pass(_main,
                                                          compiled_config)

            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)
        else:
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_geo_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)
            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)

        return _main, _startup

148
    def _can_apply_geo(self, dist_strategy, program):
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        def get_sys_free_mem():
            plat = platform.system()
            if platform.system() == "Darwin":
                vm = subprocess.Popen(
                    ['vm_stat'], stdout=subprocess.PIPE).communicate()[0]
                # Process vm_stat
                vmLines = vm.split('\n')
                sep = re.compile(':[\s]+')
                vmStats = {}
                for row in range(1, len(vmLines) - 2):
                    rowText = vmLines[row].strip()
                    rowElements = sep.split(rowText)
                    vmStats[(rowElements[0]
                             )] = int(rowElements[1].strip('\.')) * 4096
                return vmStats["Pages free"]
            elif platform.system() == "Linux":
                mems = {}
                with open('/proc/meminfo', 'rb') as f:
                    for line in f:
                        fields = line.split()
                        mems[fields[0]] = int(fields[1]) * 1024
                free = mems[b'MemFree:']
                return free
            else:
                raise ValueError(
                    "%s platform is unsupported is parameter server optimizer" %
                    (platform.system()))

        if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer):
178
            return False
179 180 181

        free = get_sys_free_mem()

182
        from paddle.fluid.incubate.fleet.parameter_server.ir import vars_metatools
183

184
        processed_var_names = set(["@EMPTY@"])
185
        param_memory_size = 0
186 187 188 189 190 191
        for varname in program.global_block().vars:
            var = program.global_block().vars[varname]
            if not var.persistable or var.desc.type(
            ) != core.VarDesc.VarType.LOD_TENSOR:
                continue
            param = vars_metatools.create_var_struct(var)
192
            param_memory_size += param.m_size
193
            processed_var_names.add(varname)
194 195 196 197

        upper_mem_use = param_memory_size * 5.0

        program_tmp_vars = dict()
198
        eval_batch_size = 1024
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        for op in program.global_block().ops:
            for var_name in op.output_arg_names:
                if var_name in processed_var_names:
                    continue
                processed_var_names.add(var_name)
                var = program.global_block().vars[var_name]

                if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
                    continue

                data_count = 1
                neg_dim_count = 0
                for x in var.shape:
                    if x < 0:
                        if neg_dim_count >= 1:
                            raise ValueError(
                                "Var %s has more than one negative dim." %
                                (var_name))
                        neg_dim_count += 1
                        data_count *= (-x)
                    else:
                        data_count *= x
221 222 223
                program_tmp_vars[var_name] = (
                    data_count, neg_dim_count,
                    vars_metatools.dtype_to_size[var.dtype])
224 225 226 227

        for varname in program_tmp_vars:
            data_count, neg_dim_count, type_size = program_tmp_vars[varname]
            if neg_dim_count == 1:
228
                data_count *= eval_batch_size
229 230 231 232
            var_memory = data_count * type_size
            upper_mem_use += var_memory

        if upper_mem_use < free:
233
            return True
234
        else:
235
            return False
236

237 238 239 240 241 242 243
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.inner_opt.minimize(loss, startup_program, parameter_list,
                                no_grad_set)
244
        strategy = self._get_distributed_strategy()
245 246 247 248 249 250 251

        _origin_main_program = loss.block.program
        _origin_startup_program = startup_program
        from paddle.fluid.incubate.fleet.parameter_server.ir import public as public

        compiled_config = public.CompileTimeStrategy(_origin_main_program,
                                                     _origin_startup_program,
252
                                                     strategy, self.role_maker)
253
        compiled_config.strategy = strategy
254

255
        if self.role_maker._is_worker() or self.role_maker._is_heter_worker():
256 257
            main_program, startup_program = self._build_trainer_programs(
                compiled_config)
258
        elif self.role_maker._is_server():
259 260
            main_program, startup_program = self._build_pserver_programs(
                compiled_config)
261 262 263 264 265 266 267

        loss.block.program = main_program
        fluid.framework.switch_startup_program(startup_program)

        return None, None

    def _disable_strategy(self, dist_strategy):
268 269 270 271 272 273 274 275 276
        dist_strategy.a_sync = False
        a_sync_configs = dist_strategy.a_sync_configs
        a_sync_configs["k_steps"] = -1
        dist_strategy.a_sync_configs = a_sync_configs

    def _enable_strategy(self, dist_strategy, context):
        a_sync_configs = dist_strategy.a_sync_configs
        if a_sync_configs["k_steps"] >= 0:
            return
277 278

        dist_strategy.a_sync = True
279 280 281 282 283 284 285 286 287 288
        a_sync_configs = dist_strategy.a_sync_configs

        is_geo = self._can_apply_geo(dist_strategy,
                                     context["origin_main_program"])

        if is_geo:
            a_sync_configs["k_steps"] = 800
        else:
            a_sync_configs["k_steps"] = 0
        dist_strategy.a_sync_configs = a_sync_configs