parameter_recv.cc 6.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_recv.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Q
Qiao Longfei 已提交
32
#include "paddle/fluid/operators/strided_memcpy.h"
Q
Qiao Longfei 已提交
33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

template <typename T>
44 45 46 47 48 49 50 51 52
void RecvSelectedRows(const CommContext &rpc_ctx,
                      const framework::Scope &scope) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto cpu_place = platform::CPUPlace();
  auto &cpu_ctx = *pool.Get(cpu_place);

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

53
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    local_scope->Var(recv_var_name);
    VLOG(4) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i];
    // sparse param in recv_scope is LoDTensor
    rets.push_back(rpc_client->AsyncGetVar(rpc_ctx.epmap[i], cpu_ctx,
                                           *local_scope.get(), recv_var_name,
                                           recv_var_name, recv_var_name));
  }

  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
  }

  int64_t height = 0;
  int64_t ids_num = 0;
  int64_t width = 0;

  std::vector<int64_t> all_ids;
  auto pserver_num = rpc_ctx.splited_varnames.size();

  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    auto *recv_var = local_scope->FindVar(recv_var_name);
    auto &recv_t = recv_var->Get<framework::SelectedRows>();

    height += recv_t.height();
    ids_num += recv_t.rows().size();
    width = recv_t.value().dims()[1];

    std::transform(recv_t.rows().begin(), recv_t.rows().end(),
                   std::back_inserter(all_ids),
                   [&](int64_t id) { return id * pserver_num + i; });
  }

  auto *var = scope.FindVar(rpc_ctx.var_name);
  auto *t_ = var->GetMutable<framework::SelectedRows>();
  T *out_data =
      t_->mutable_value()->mutable_data<T>({ids_num, width}, cpu_place);
  t_->set_height(height);
  t_->set_rows(all_ids);

  int64_t cnt = 0;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    auto *recv_var = local_scope->FindVar(recv_var_name);
    auto &recv_t = recv_var->Get<framework::SelectedRows>();

    auto rows = recv_t.rows().size();
    const T *in_data = recv_t.value().data<T>();
    std::copy_n(in_data, rows * width, out_data + cnt);
    cnt += rows * width;
  }
  t_->SyncIndex();
}

template <typename T>
void RecvLodTensor(const CommContext &rpc_ctx, const framework::Scope &scope) {
Q
Qiao Longfei 已提交
115
  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
116
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
117

118 119 120 121 122 123
  std::vector<distributed::VarHandlePtr> rets;

  // variable do not spilt
  if (rpc_ctx.origin_varnames.size() == 1 &&
      rpc_ctx.splited_varnames.size() == 1) {
    auto varname = rpc_ctx.origin_varnames[0];
M
MrChengmo 已提交
124 125 126 127
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    VLOG(4) << "recv " << varname << " from " << rpc_ctx.epmap[0] << " in gpu? "
            << platform::is_gpu_place(place);
128 129
    rets.push_back(rpc_client->AsyncGetVarNoBarrier(rpc_ctx.epmap[0], cpu_ctx,
                                                    scope, varname, varname));
Q
Qiao Longfei 已提交
130
    for (size_t i = 0; i < rets.size(); i++) {
131 132 133
      PADDLE_ENFORCE_NE(
          rets[i]->Wait(), 0U,
          platform::errors::ExecutionTimeout("internal error in RPCClient"));
Q
Qiao Longfei 已提交
134
    }
135 136 137

    VLOG(3) << "ParameterRecv out " << rpc_ctx.var_name;
    return;
Q
Qiao Longfei 已提交
138
  } else {
139 140 141
    PADDLE_ENFORCE(false, platform::errors::Unimplemented(
                              "ParameterRecv can not recv dense with multi "
                              "parts now, add it soon."));
Q
Qiao Longfei 已提交
142
  }
143
}
Q
Qiao Longfei 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename T>
void ParameterRecv<T>::operator()(const CommContext &rpc_ctx,
                                  const framework::Scope &scope, bool barrier) {
  VLOG(3) << "ParameterRecv in " << rpc_ctx.var_name;

  PADDLE_ENFORCE_GE(rpc_ctx.origin_varnames.size(), 1,
                    platform::errors::InvalidArgument(
                        "origin_varnames.size() >= 1 is permitted"));

  if (rpc_ctx.is_sparse) {
    RecvSelectedRows<T>(rpc_ctx, scope);
  } else {
    RecvLodTensor<T>(rpc_ctx, scope);
Q
Qiao Longfei 已提交
158 159
  }

160 161 162 163 164 165 166
  VLOG(3) << "ParameterRecv out " << rpc_ctx.var_name;
}

template <typename T>
void ParameterRecv<T>::operator()(const CommContext &rpc_ctx,
                                  const framework::Scope &scope) {
  this->operator()(rpc_ctx, scope, true);
Q
Qiao Longfei 已提交
167 168 169 170 171 172 173
}

template struct ParameterRecv<float>;

};  // namespace distributed
};  // namespace operators
};  // namespace paddle