elementwise_mul_op.cu 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
18
#include "paddle/fluid/platform/complex.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/platform/float16.h"
20 21

namespace ops = paddle::operators;
W
Wu Yi 已提交
22
namespace plat = paddle::platform;
23

24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31 32 33
template <typename T>
struct CudaMulFunctor {
  inline HOSTDEVICE T operator()(const T* args) const {
    return args[0] * args[1];
  }
};

34 35 36 37 38
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
39
    framework::Tensor x_for_selectedrows;
40 41 42 43 44
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();

45
    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
46
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
47
        cuda_ctx, ins, &outs, axis, CudaMulFunctor<T>());
48 49 50
  }
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename T>
static __global__ void SimpleElemwiseMulGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = y[col] * o;
    dy[col] = x[col] * o;
    col += blockDim.x * gridDim.x;
  }
}

67
template <>
68 69 70 71
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<float>>(
    const plat::complex<float>* x, const plat::complex<float>* y,
    const plat::complex<float>* out, const plat::complex<float>* dout,
    int64_t size, plat::complex<float>* dx, plat::complex<float>* dy) {
72 73 74
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
75 76 77
    plat::complex<float> o = dout[col];
    dx[col] = plat::complex<float>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<float>(x[col].real, -x[col].imag) * o;
78 79 80 81 82
    col += blockDim.x * gridDim.x;
  }
}

template <>
83 84 85 86
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<double>>(
    const plat::complex<double>* x, const plat::complex<double>* y,
    const plat::complex<double>* out, const plat::complex<double>* dout,
    int64_t size, plat::complex<double>* dx, plat::complex<double>* dy) {
87 88 89
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
90 91 92
    plat::complex<double> o = dout[col];
    dx[col] = plat::complex<double>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<double>(x[col].real, -x[col].imag) * o;
93 94 95 96
    col += blockDim.x * gridDim.x;
  }
}

97 98 99 100 101 102 103 104 105 106
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
107
  dim3 grid_size =
108 109
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseMulGradCUDAKernel<
110
      T><<<grid_size, block_size, 0,
111 112 113 114
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}
115 116 117 118

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
119
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
120 121 122 123
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
124
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
125
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
126 127
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
128
REGISTER_OP_CUDA_KERNEL(
129
    elementwise_mul_grad,
W
Wu Yi 已提交
130 131 132 133
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
134
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
135
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
136 137 138 139
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
140 141 142 143 144
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
145
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
146
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
147
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
148
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
149
                                        plat::complex<float>>,
150
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
151
                                        plat::complex<double>>);