partial_recv_op.cu.cc 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/partial_recv_op.h"

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif

namespace paddle {
namespace operators {

template <typename T>
class PartialRecvOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
#if (defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)) && \
    NCCL_VERSION_CODE >= 2703
    auto out = ctx.Output<framework::LoDTensor>("Out");
    auto out_dims = out->dims();
    auto numel = out->numel();

    int rid = ctx.Attr<int>("ring_id");
    int peer = ctx.Attr<int>("peer");
    int data_type = ctx.Attr<int>("dtype");
    int num = ctx.Attr<int>("num");
    int id = ctx.Attr<int>("id");
    framework::proto::VarType::Type type =
        framework::proto::VarType::Type(data_type);

    PADDLE_ENFORCE_GE(
        rid, 0,
        platform::errors::InvalidArgument(
            "The ring_id (%d) for partial_recv op must be non-negative.", rid));
    PADDLE_ENFORCE_GE(
        peer, 0,
        platform::errors::InvalidArgument(
            "The peer (%d) for partial_recv op must be non-negative.", peer));
    PADDLE_ENFORCE_GE(num, 1,
                      platform::errors::InvalidArgument(
                          "The num (%d) for partial_recv op must >=1", num));
    PADDLE_ENFORCE_EQ(
        (id >= 0 && id < num), true,
        platform::errors::InvalidArgument(
            "The id (%d) for partial_recv op must >=0 and <num (%d)", id, num));
    PADDLE_ENFORCE_EQ(
        (numel % num), 0,
        platform::errors::InvalidArgument(
            "The input numel (%d) must be divisible by num(%d)", numel, num));

    gpuStream_t stream = nullptr;
    auto place = ctx.GetPlace();
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext *>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }
    PADDLE_ENFORCE_LT(
        peer, comm->nranks(),
        platform::errors::InvalidArgument("The value of peer (%d) you set must "
                                          "be less than comm->nranks (%d).",
                                          peer, comm->nranks()));

    out->mutable_data<T>(out_dims, place);
    ncclDataType_t dtype = platform::ToNCCLDataType(type);
    int recv_numel = numel / num;
    int offset = recv_numel * id;

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::ncclRecv(out->data<T>() + offset, recv_numel, dtype,
                                    peer, comm->comm(), stream));
    VLOG(3) << "rank " << comm->rank() << " recv " << recv_numel
            << " from offset[" << offset << "] from " << peer;
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should be compiled with NCCL and "
        "NCCL version >= 2.7.3 is needed."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(partial_recv, ops::PartialRecvOpCUDAKernel<float>,
                        ops::PartialRecvOpCUDAKernel<double>,
                        ops::PartialRecvOpCUDAKernel<int>,
                        ops::PartialRecvOpCUDAKernel<int64_t>,
                        ops::PartialRecvOpCUDAKernel<plat::float16>);