test_CompareTwoOpts.cpp 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include <gtest/gtest.h>
Z
zhangjinchao01 已提交
16 17
#include <paddle/utils/PythonUtil.h>
#include <algorithm>
Y
Yu Yang 已提交
18
#include <cstdlib>
Z
zhangjinchao01 已提交
19 20 21 22 23 24

#include "paddle/trainer/Trainer.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

25
DECLARE_int32(gpu_id);
Z
zhangjinchao01 已提交
26

27 28
DECLARE_bool(local);
DECLARE_bool(use_gpu);
Z
zhangjinchao01 已提交
29

30 31
DECLARE_string(config);
DECLARE_string(nics);
Z
zhangjinchao01 已提交
32

33 34 35 36 37 38
DEFINE_string(config_file_a, "", "config of one network to compare");
DEFINE_string(config_file_b, "", "config of another network to compare");
DEFINE_bool(need_high_accuracy,
            true,
            "whether need to run in double accuracy (recommended)");
DEFINE_double(
39 40 41
    max_diff_ratio,
    0.0f,
    "max diff ratio allowed for outputs and parameters (value/gradient)");
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

struct ComData {
  vector<Argument> outArgs;
  vector<ParameterPtr> parameters;
};

void calcGradient(ComData& data, const string configFile) {
  FLAGS_config = configFile;

  FLAGS_local = true;
  FLAGS_use_gpu = false;

  FLAGS_nics = "";

  *ThreadLocalRand::getSeed() = 0;
  srand(0);

  Trainer trainer;
  trainer.init(TrainerConfigHelper::createFromFlagConfig(), false);

  data.parameters = trainer.getGradientMachine()->getParameters();
  trainer.getDataProvider()->setSkipShuffle();
  trainer.train();
}

67 68 69 70 71 72
void checkBuffer(real* A,
                 const char* desA,
                 real* B,
                 const char* desB,
                 size_t len,
                 size_t width = 1) {
Z
zhangjinchao01 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  int nNum = 0;
  for (size_t i = 0; i < len; ++i) {
    real diff = fabs(A[i] - B[i]);
    if (diff > 0.0f &&
        diff / std::max(fabs(A[i]), fabs(B[i])) > FLAGS_max_diff_ratio) {
      nNum++;
      LOG(INFO) << "Row: " << i / width << ", " << desA << " : " << A[i]
                << "    " << desB << " : " << B[i];
    }
  }
  EXPECT_EQ(0, nNum);
  LOG(INFO) << "\n\n";
}

void compareGradient(ComData& comDataA, ComData& comDataB) {
  vector<Argument> outArgsA = comDataA.outArgs;
  vector<Argument> outArgsB = comDataB.outArgs;

  for (size_t i = 0; i < outArgsA.size(); ++i) {
    CpuMatrix matA(outArgsA[i].value->getHeight(),
                   outArgsA[i].value->getWidth());
    CpuMatrix matB(outArgsB[i].value->getHeight(),
                   outArgsB[i].value->getWidth());

    matA.copyFrom(*outArgsA[i].value);
    matB.copyFrom(*outArgsB[i].value);

    LOG(INFO) << "\n--------------------------------"
              << " Check Network Output_" << i << ":"
              << " -------------------------------------\n";
103 104 105 106 107 108
    checkBuffer(matA.getData(),
                "network A output",
                matB.getData(),
                "network B output",
                matA.getElementCnt(),
                matA.getWidth());
Z
zhangjinchao01 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  }

  vector<ParameterPtr>& parametersA = comDataA.parameters;
  vector<ParameterPtr>& parametersB = comDataB.parameters;

  LOG(INFO) << "\n\n--------------------------------"
            << " Check Gradient Machine Parameters:"
            << " -------------------------------------\n";
  for (size_t i = 0; i < parametersA.size(); ++i) {
    ParameterPtr parameterA, parameterB;
    parameterA = parametersA[i];
    parameterB = parametersB[i];

    CpuVector paraA(parameterA->getSize());
    CpuVector paraB(parameterB->getSize());
    paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE));
    paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE));

    LOG(INFO) << "\n\n----------- PARAMETER_VALUE:  " << parameterA->getName()
              << " ; size : " << paraA.getSize() << " ------------";
129 130 131 132
    checkBuffer(paraA.getData(),
                "Network A",
                paraB.getData(),
                "Network B",
Z
zhangjinchao01 已提交
133 134 135 136 137 138 139
                paraA.getSize());

    CpuVector gradA(*parameterA->getBuf(PARAMETER_GRADIENT));
    CpuVector gradB(*parameterB->getBuf(PARAMETER_GRADIENT));

    LOG(INFO) << "\n\n----------- PARAMETER_GRADIENT: " << parameterA->getName()
              << " ; size : " << gradA.getSize() << " -----------";
140 141 142 143
    checkBuffer(gradA.getData(),
                "Network A",
                gradB.getData(),
                "Network B",
Z
zhangjinchao01 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                gradA.getSize());
  }
}

TEST(Trainer, create) {
  ComData dataA;
  calcGradient(dataA, FLAGS_config_file_a);
  LOG(INFO) << "\n\ntraining of Network A is finished\n\n";

  ComData dataB;
  calcGradient(dataB, FLAGS_config_file_b);
  LOG(INFO) << "\n\ntraining of the Network B is finished\n\n";

  compareGradient(dataA, dataB);
}

int main(int argc, char** argv) {
  paddle::initMain(argc, argv);
  testing::InitGoogleTest(&argc, argv);
  initPython(argc, argv);

#ifndef PADDLE_TYPE_DOUBLE
  if (FLAGS_need_high_accuracy) {
    LOG(INFO) << "skip test due to it's need high accuracy";
    return 0;
  }
  if (FLAGS_max_diff_ratio == 0.0f) {
    FLAGS_max_diff_ratio = 2e-4;
    LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
              << " in low accuracy mode";
  }
#else
  if (FLAGS_max_diff_ratio == 0.0f) {
    FLAGS_max_diff_ratio = 2e-7;
    LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
              << " in high accuracy mode";
  }
#endif
  int ret = RUN_ALL_TESTS();
  return ret;
}