mul_op_xpu.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
21

22
#include "paddle/fluid/framework/op_registry.h"
23 24
#include "paddle/fluid/operators/xpu_api_wrapper.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

using framework::OpKernelType;
using framework::Tensor;

template <typename DeviceContext, typename T>
class MulXPUKernel : public framework::OpKernel<T> {
34 35
  using XPUType = typename XPUTypeTrait<T>::Type;

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* x = context.Input<Tensor>("X");
    const Tensor* y = context.Input<Tensor>("Y");
    Tensor* z = context.Output<Tensor>("Out");
    const Tensor x_matrix =
        x->dims().size() > 2
            ? framework::ReshapeToMatrix(
                  *x, context.template Attr<int>("x_num_col_dims"))
            : *x;
    const Tensor y_matrix =
        y->dims().size() > 2
            ? framework::ReshapeToMatrix(
                  *y, context.template Attr<int>("y_num_col_dims"))
            : *y;
    z->mutable_data<T>(context.GetPlace());
    auto z_dim = z->dims();
    if (z_dim.size() != 2) {
      z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }
    bool trans_a = false;
    bool trans_b = false;
    int m = x_matrix.dims()[0];
    int k = x_matrix.dims()[1];
    int k1 = y_matrix.dims()[0];
    int n = y_matrix.dims()[1];
    PADDLE_ENFORCE_EQ(
        k, k1, platform::errors::InvalidArgument("Shape mistake in mul_op"));
    T alpha = static_cast<T>(1.0);
    T beta = static_cast<T>(0.0);
    const T* data_a = x_matrix.data<T>();
    const T* data_b = y_matrix.data<T>();
    T* data_c = z->data<T>();
    auto& dev_ctx = context.template device_context<DeviceContext>();
70 71

    int ret = xpu_fc_wrapper<XPUType, int16_t>(
72 73
        dev_ctx.x_context(),
        reinterpret_cast<const XPUType*>(data_a),
74
        reinterpret_cast<const XPUType*>(data_b),
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        reinterpret_cast<XPUType*>(data_c),
        m,
        n,
        k,
        trans_a,
        trans_b,
        nullptr,
        nullptr,
        nullptr,
        k,
        n,
        n,
        alpha,
        beta,
        nullptr,
90 91 92
        xpu::Activation_t::LINEAR);
    PADDLE_ENFORCE_XDNN_SUCCESS(ret, "xpu_fc_wrapper");

93 94 95 96 97 98 99 100
    if (z_dim.size() != 2) {
      z->Resize(z_dim);
    }
  }
};

template <typename DeviceContext, typename T>
class MulGradXPUKernel : public framework::OpKernel<T> {
101 102
  using XPUType = typename XPUTypeTrait<T>::Type;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto x_matrix = x->dims().size() > 2
                        ? framework::ReshapeToMatrix(*x, x_num_col_dims)
                        : static_cast<const Tensor&>(*x);
    auto y_matrix = y->dims().size() > 2
                        ? framework::ReshapeToMatrix(*y, y_num_col_dims)
                        : static_cast<const Tensor&>(*y);
    auto* dout = ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    Tensor dout_mat;
117 118
    dout_mat.Resize({phi::flatten_to_2d(x->dims(), x_num_col_dims)[0],
                     phi::flatten_to_2d(y->dims(), y_num_col_dims)[1]});
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    auto* dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
    if (dx != nullptr) {
      dx->set_lod(x->lod());
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
    }
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
      Tensor dx_matrix = dx->dims().size() > 2
                             ? framework::ReshapeToMatrix(*dx, x_num_col_dims)
                             : *dx;
      // dx = dout * y'. dx: M x K, dout : M x N, y : K x N
      // blas.MatMul(dout_mat, false, y_matrix, true, &dx_matrix);
      bool trans_a = false;
      bool trans_b = true;
      int m = dout_mat.dims()[0];
      int k = dout_mat.dims()[1];
      int n = y_matrix.dims()[0];
      int k1 = y_matrix.dims()[1];
      PADDLE_ENFORCE_EQ(
          k, k1, platform::errors::InvalidArgument("Shape mistake in mul_op"));
      int lda = (!trans_a) ? k : m;
      int ldb = (!trans_b) ? n : k;
      int ldc = n;
      T alpha = static_cast<T>(1.0);
      T beta = static_cast<T>(0.0);
      const T* data_a = dout->data<T>();
      const T* data_b = y_matrix.data<T>();
      T* data_c = dx_matrix.data<T>();
151 152

      int ret = xpu_fc_wrapper<XPUType, int16_t>(
153 154
          dev_ctx.x_context(),
          reinterpret_cast<const XPUType*>(data_a),
155
          reinterpret_cast<const XPUType*>(data_b),
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
          reinterpret_cast<XPUType*>(data_c),
          m,
          n,
          k,
          trans_a,
          trans_b,
          nullptr,
          nullptr,
          nullptr,
          lda,
          ldb,
          ldc,
          alpha,
          beta,
          nullptr,
171 172
          xpu::Activation_t::LINEAR);
      PADDLE_ENFORCE_XDNN_SUCCESS(ret, "xpu_fc_wrapper");
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    }

    if (dy) {
      dy->mutable_data<T>(ctx.GetPlace());
      Tensor dy_matrix = dy->dims().size() > 2
                             ? framework::ReshapeToMatrix(*dy, y_num_col_dims)
                             : *dy;
      // dy = x' * dout. dy K x N, dout : M x N, x : M x K
      // blas.MatMul(x_matrix, true, dout_mat, false, &dy_matrix);
      bool trans_a = true;
      bool trans_b = false;
      int k = x_matrix.dims()[0];
      int m = x_matrix.dims()[1];
      int k1 = dout_mat.dims()[0];
      int n = dout_mat.dims()[1];
      PADDLE_ENFORCE_EQ(
          k, k1, platform::errors::InvalidArgument("Shape mistake in mul_op"));
      int lda = (!trans_a) ? k : m;
      int ldb = (!trans_b) ? n : k;
      int ldc = n;
      T alpha = static_cast<T>(1.0);
      T beta = static_cast<T>(0.0);
      const T* data_a = x_matrix.data<T>();
      const T* data_b = dout->data<T>();
      T* data_c = dy_matrix.data<T>();
198 199

      int ret = xpu_fc_wrapper<XPUType, int16_t>(
200 201
          dev_ctx.x_context(),
          reinterpret_cast<const XPUType*>(data_a),
202
          reinterpret_cast<const XPUType*>(data_b),
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
          reinterpret_cast<XPUType*>(data_c),
          m,
          n,
          k,
          trans_a,
          trans_b,
          nullptr,
          nullptr,
          nullptr,
          lda,
          ldb,
          ldc,
          alpha,
          beta,
          nullptr,
218 219
          xpu::Activation_t::LINEAR);
      PADDLE_ENFORCE_XDNN_SUCCESS(ret, "xpu_fc_wrapper");
220 221 222 223 224 225 226 227
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
228
namespace plat = paddle::platform;
229 230

REGISTER_OP_XPU_KERNEL(
231 232
    mul,
    ops::MulXPUKernel<paddle::platform::XPUDeviceContext, float>,
233
    ops::MulXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>);
234
REGISTER_OP_XPU_KERNEL(
235 236
    mul_grad,
    ops::MulGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
237
    ops::MulGradXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>)
238
#endif