common_dense_table.cc 5.0 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/table/common_dense_table.h"
#include "paddle/fluid/distributed/common/utils.h"

namespace paddle {
namespace distributed {

void CommonDenseTable::create_initializer(const std::string& attr,
                                          const std::string& name) {
  auto slices = string::split_string<std::string>(attr, "&");

  if (slices[0] == "gaussian_random") {
    initializers_[name] = new GaussianInitializer(slices);
  } else if (slices[0] == "fill_constant") {
    initializers_[name] = new FillConstantInitializer(slices);
  } else if (slices[0] == "uniform_random") {
    initializers_[name] = new UniformInitializer(slices);
  } else {
    PADDLE_THROW(
        platform::errors::InvalidArgument("%s can not be supported", name));
  }
}

int32_t CommonDenseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;
C
Chengmo 已提交
45
  _global_lr = new float(1.0);
T
tangwei12 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

  initialize_value();
  initialize_optimizer();
  return 0;
}

int32_t CommonDenseTable::initialize_value() {
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());
  values_.resize(size);
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
    if (varname == "Param") {
      param_dim_ = dim;
      param_idx_ = x;
    }
    auto& initializer = common.initializers()[x];

    create_initializer(initializer, varname);
    values_[x].resize(dim);
    names_index_[varname] = x;

    for (int y = 0; y < dim; ++y) {
      values_[x][y] = initializers_[varname]->GetValue();
    }
  }

  pull_reservoir_ = ReservoirValue<float>(param_dim_);
  return 0;
}

int32_t CommonDenseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();
  auto attrs = common.attributes();

  if (name == "sgd") {
    optimizer_ = std::make_shared<DSGD>(common, &values_);
C
Chengmo 已提交
85
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
86 87
  } else if (name == "adam") {
    optimizer_ = std::make_shared<DAdam>(common, &values_);
C
Chengmo 已提交
88
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
89 90 91 92 93 94 95 96 97
  } else if (name == "sum") {
    optimizer_ = std::make_shared<DSUM>(common, &values_);
  } else {
    VLOG(0) << "init optimizer failed";
  }
  VLOG(0) << "init optimizer " << name << " done";
  return 0;
}

C
Chengmo 已提交
98 99 100 101 102 103
int32_t CommonDenseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

T
tangwei12 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
int32_t CommonDenseTable::pull_dense(float* pull_values, size_t num) {
  std::copy(values_[param_idx_].begin(), values_[param_idx_].end(),
            pull_values);
  return 0;
}

int32_t CommonDenseTable::push_dense_param(const float* values, size_t num) {
  PADDLE_ENFORCE_GE(
      num, param_dim_,
      paddle::platform::errors::InvalidArgument(
          "update desne param numel expected %d, but got %d", param_dim_, num));
  std::copy_n(values, param_dim_, values_[param_idx_].begin());
  return 0;
}

int32_t CommonDenseTable::pour() {
  _push_dense(pull_reservoir_.values.data(), pull_reservoir_.values.size());
  pull_reservoir_.reset();
  return 0;
}

int32_t CommonDenseTable::push_dense(const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &values]() -> int {
          pull_reservoir_.add(values, param_dim_);
          return 0;
        });
    task.wait();
  } else {
    _push_dense(values, num);
  }
  return 0;
}

int32_t CommonDenseTable::_push_dense(const float* values, size_t num) {
  PADDLE_ENFORCE_GE(
      num, param_dim_,
      paddle::platform::errors::InvalidArgument(
          "update desne numel expected %d, but got %d", param_dim_, num));

  std::vector<int> buckets = bucket(param_dim_, task_pool_size_);
  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &buckets, &values]() -> int {
          auto begin = buckets[shard_id];
          auto end = buckets[shard_id + 1];
          optimizer_->update(values, param_dim_, begin, end);
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

}  // namespace distributed
}  // namespace paddle