sigmoid_focal_loss_op.h 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <limits>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class SigmoidFocalLossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *X = context.Input<Tensor>("X");
    const Tensor *Labels = context.Input<Tensor>("Label");
    const Tensor *FgNum = context.Input<Tensor>("FgNum");
    Tensor *Out = context.Output<Tensor>("Out");
    T gamma = static_cast<T>(context.Attr<float>("gamma"));
    T alpha = static_cast<T>(context.Attr<float>("alpha"));
    auto out_data = Out->mutable_data<T>(context.GetPlace());
    int limit = Out->numel();
    auto x_data = X->data<T>();
    auto label_data = Labels->data<int>();
    auto fg_num_data = FgNum->data<int>();
    auto x_dims = X->dims();
    int num_classes = static_cast<int>(x_dims[1]);

    for (int idx = 0; idx < limit; ++idx) {
      T x = x_data[idx];
      int a = idx / num_classes;  // current sample
      int d = idx % num_classes;  // current class
      int g = label_data[a];      // target

      // Check whether the input data is positive or negative
      // The target classes are in range 1-81
      // and the d is in range 0-80
      T c_pos = static_cast<T>(g == (d + 1));
      T c_neg = static_cast<T>((g != -1) & (g != (d + 1)));
      T fg_num = static_cast<T>((fg_num_data[0] > 1) ? fg_num_data[0] : 1);
      T s_neg = (1.0 - alpha) / fg_num;
      T s_pos = alpha / fg_num;

      // p = 1. / 1. + expf(-x)
      T p = 1. / (1. + std::exp(-x));

      // (1 - p)**gamma * log(p) where
      T term_pos = std::pow(static_cast<T>(1. - p), gamma) *
                   std::log(p > FLT_MIN ? p : FLT_MIN);
      // p**gamma * log(1 - p)
      T term_neg =
          std::pow(p, gamma) *
          (-1. * x * (x >= 0) - std::log(1. + std::exp(x - 2. * x * (x >= 0))));
      out_data[idx] = 0.0;
      out_data[idx] += -c_pos * term_pos * s_pos;
      out_data[idx] += -c_neg * term_neg * s_neg;
    }
  }
};

template <typename DeviceContext, typename T>
class SigmoidFocalLossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *X = context.Input<Tensor>("X");
    const Tensor *Labels = context.Input<Tensor>("Label");
    const Tensor *FgNum = context.Input<Tensor>("FgNum");
    const Tensor *dOut = context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *dX = context.Output<Tensor>(framework::GradVarName("X"));
    auto dx_data = dX->mutable_data<T>(context.GetPlace());
    T gamma = static_cast<T>(context.Attr<float>("gamma"));
    T alpha = static_cast<T>(context.Attr<float>("alpha"));
    auto x_dims = X->dims();
    int num_classes = static_cast<int>(x_dims[1]);

    int limit = dX->numel();
    auto x_data = X->data<T>();
    auto label_data = Labels->data<int>();
    auto fg_num_data = FgNum->data<int>();
    auto dout_data = dOut->data<T>();
    for (int idx = 0; idx < limit; ++idx) {
      T x = x_data[idx];
      int a = idx / num_classes;  // current sample
      int d = idx % num_classes;  // current class

      T fg_num = static_cast<T>((fg_num_data[0] > 1) ? fg_num_data[0] : 1);
      T s_neg = static_cast<T>((1.0 - alpha) / fg_num);
      T s_pos = alpha / fg_num;
      int g = label_data[a];

      T c_pos = static_cast<T>(g == (d + 1));
      T c_neg = static_cast<T>((g != -1) & (g != (d + 1)));
      T p = 1. / (1. + std::exp(-x));

      // (1-p)**g * (1 - p - g*p*log(p))
      T term_pos = std::pow(static_cast<T>(1. - p), gamma) *
                   (1. - p - (p * gamma * std::log(p > FLT_MIN ? p : FLT_MIN)));
      // (p**g) * (g*(1-p)*log(1-p) - p)
      T term_neg = std::pow(p, gamma) *
                   ((-1. * x * (x >= 0) -
                     std::log(1. + std::exp(x - 2. * x * (x >= 0)))) *
                        (1. - p) * gamma -
                    p);

      dx_data[idx] = 0.0;
      dx_data[idx] += -c_pos * s_pos * term_pos;
      dx_data[idx] += -c_neg * s_neg * term_neg;
      dx_data[idx] = dx_data[idx] * dout_data[idx];
    }
  }
};

}  // namespace operators
}  // namespace paddle