api_train_v2.py 8.2 KB
Newer Older
D
dangqingqing 已提交
1
import math
D
update  
dangqingqing 已提交
2
import numpy as np
C
caoying03 已提交
3 4
import gzip
import logging
D
dangqingqing 已提交
5
import paddle.v2.dataset.conll05 as conll05
C
caoying03 已提交
6 7
import paddle.v2.evaluator as evaluator
import paddle.v2 as paddle
D
dangqingqing 已提交
8

C
caoying03 已提交
9 10 11 12
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
D
dangqingqing 已提交
13

C
caoying03 已提交
14 15 16 17 18 19 20
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
default_std = 1 / math.sqrt(hidden_dim) / 3.0
mix_hidden_lr = 1e-3
D
dangqingqing 已提交
21 22


C
caoying03 已提交
23 24 25 26 27 28
def d_type(size):
    return paddle.data_type.integer_value_sequence(size)


def db_lstm():
    #8 features
D
dangqingqing 已提交
29 30 31 32 33 34 35 36 37 38
    word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
    predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

    ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
    ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
    ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
    ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
    ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
    mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

C
caoying03 已提交
39
    emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
D
dangqingqing 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    std_0 = paddle.attr.Param(initial_std=0.)
    std_default = paddle.attr.Param(initial_std=default_std)

    predicate_embedding = paddle.layer.embedding(
        size=word_dim,
        input=predicate,
        param_attr=paddle.attr.Param(
            name='vemb', initial_std=default_std))
    mark_embedding = paddle.layer.embedding(
        size=mark_dim, input=mark, param_attr=std_0)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
        paddle.layer.embedding(
            size=word_dim, input=x, param_attr=emb_para) for x in word_input
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0 = paddle.layer.mixed(
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=emb, param_attr=std_default) for emb in emb_layers
        ])

    lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
    hidden_para_attr = paddle.attr.Param(
        initial_std=default_std, learning_rate=mix_hidden_lr)

    lstm_0 = paddle.layer.lstmemory(
        input=hidden_0,
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    #stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = paddle.layer.mixed(
            size=hidden_dim,
            bias_attr=std_default,
            input=[
                paddle.layer.full_matrix_projection(
                    input=input_tmp[0], param_attr=hidden_para_attr),
                paddle.layer.full_matrix_projection(
                    input=input_tmp[1], param_attr=lstm_para_attr)
            ])

        lstm = paddle.layer.lstmemory(
            input=mix_hidden,
            act=paddle.activation.Relu(),
            gate_act=paddle.activation.Sigmoid(),
            state_act=paddle.activation.Sigmoid(),
            reverse=((i % 2) == 1),
            bias_attr=std_0,
            param_attr=lstm_para_attr)

        input_tmp = [mix_hidden, lstm]

    feature_out = paddle.layer.mixed(
        size=label_dict_len,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ], )

C
caoying03 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    return feature_out


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


def test_a_batch(inferer, test_data, tag_dict):
    probs = inferer.infer(input=test_data, field='id')
    assert len(probs) == sum(len(x[0]) for x in test_data)
    for test_sample in test_data:
        start_id = 0
        pre_lab = [
            tag_dict[probs[start_id + i]] for i in xrange(len(test_sample[0]))
        ]
        print pre_lab
        start_id += len(test_sample[0])


def main(is_predict=False):
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
    feature_out = db_lstm()
    target = paddle.layer.data(name='target', type=d_type(label_dict_len))
D
dangqingqing 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153
    crf_cost = paddle.layer.crf(size=label_dict_len,
                                input=feature_out,
                                label=target,
                                param_attr=paddle.attr.Param(
                                    name='crfw',
                                    initial_std=default_std,
                                    learning_rate=mix_hidden_lr))

    crf_dec = paddle.layer.crf_decoding(
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(name='crfw'))
C
caoying03 已提交
154
    evaluator.sum(input=crf_dec)
D
update  
dangqingqing 已提交
155

D
dangqingqing 已提交
156
    # create parameters
C
caoying03 已提交
157 158
    parameters = paddle.parameters.create(crf_cost)
    parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
D
dangqingqing 已提交
159 160 161 162 163 164 165 166

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-2,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(
            average_window=0.5, max_average_window=10000), )
D
dangqingqing 已提交
167

D
update  
dangqingqing 已提交
168 169
    trainer = paddle.trainer.SGD(cost=crf_cost,
                                 parameters=parameters,
C
caoying03 已提交
170 171
                                 update_equation=optimizer,
                                 extra_layers=crf_dec)
D
update  
dangqingqing 已提交
172

C
caoying03 已提交
173
    reader = paddle.batch(
D
update  
dangqingqing 已提交
174
        paddle.reader.shuffle(
D
update  
dangqingqing 已提交
175
            conll05.test(), buf_size=8192), batch_size=10)
D
dangqingqing 已提交
176

Y
Yu Yang 已提交
177
    feeding = {
D
update  
dangqingqing 已提交
178 179 180 181 182 183 184 185 186 187 188
        'word_data': 0,
        'ctx_n2_data': 1,
        'ctx_n1_data': 2,
        'ctx_0_data': 3,
        'ctx_p1_data': 4,
        'ctx_p2_data': 5,
        'verb_data': 6,
        'mark_data': 7,
        'target': 8
    }

C
caoying03 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            if event.batch_id % 1000 == 0:
                result = trainer.test(reader=reader, feeding=feeding)
                print "\nTest with Pass %d, Batch %d, %s" % (
                    event.pass_id, event.batch_id, result.metrics)

        if isinstance(event, paddle.event.EndPass):
            # save parameters
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

            result = trainer.test(reader=reader, feeding=feeding)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    if not is_predict:
        trainer.train(
            reader=reader,
            event_handler=event_handler,
            num_passes=10,
            feeding=feeding)
    else:
        labels_reverse = {}
        for (k, v) in label_dict.items():
            labels_reverse[v] = k
        test_creator = paddle.dataset.conll05.test()

        predict = paddle.layer.crf_decoding(
            size=label_dict_len,
            input=feature_out,
            param_attr=paddle.attr.Param(name='crfw'))

        test_pass = 0
        with gzip.open('params_pass_%d.tar.gz' % (test_pass)) as f:
            parameters = paddle.parameters.Parameters.from_tar(f)
            inferer = paddle.inference.Inference(
                output_layer=predict, parameters=parameters)

            # prepare test data
            test_data = []
            test_batch_size = 50

            for idx, item in enumerate(test_creator()):
                test_data.append(item[0:8])

                if idx and (not idx % test_batch_size):
                    test_a_batch(inferer, test_data, labels_reverse)
                    test_data = []
            test_a_batch(inferer, test_data, labels_reverse)
            test_data = []
D
dangqingqing 已提交
242 243 244


if __name__ == '__main__':
C
caoying03 已提交
245
    main(is_predict=False)