softmax_op.cc 3.4 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/operators/softmax_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
D
dongzhihong 已提交
25
  void InferShape(const framework::InferShapeContext &ctx) const override {
Q
Qiao Longfei 已提交
26
    PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
C
caoying03 已提交
27
                   "The input of softmax op must be a matrix.");
Q
Qiao Longfei 已提交
28
    ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
29 30 31
  }
};

D
dongzhihong 已提交
32
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
33
 public:
D
dongzhihong 已提交
34 35
  SoftmaxOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
36
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    AddInput("X",
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
    AddOutput("Y", "The normalized values with the same shape as X.");
    AddComment(R"DOC(
The input of softmax operator is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1. Specifically, it computes the
exponential of the given dimension and the sum of exponential values of all
the other dimensions in the K-dimensional vector input. Then the ratio of the
exponential of the given dimension and the sum of exponential values of all
the other dimensions is the output of the softmax operator.

For each row `i` and each column `j` in X, we have:
    Y[i, j] = exp(X[i, j]) / sum_j(exp(X[i, j]))

)DOC");
58 59 60
  }
};

D
dongzhihong 已提交
61
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
62 63 64
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

65
 protected:
D
dongzhihong 已提交
66
  void InferShape(const framework::InferShapeContext &ctx) const override {
Q
Qiao Longfei 已提交
67
    PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null");
Y
Yan Chunwei 已提交
68 69
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
                            "Input(Y@GRAD) should not be null");
Q
Qiao Longfei 已提交
70
    PADDLE_ENFORCE(ctx.Input<Tensor>("Y")->dims() ==
Y
Yi Wang 已提交
71
                       ctx.Input<Tensor>(framework::GradVarName("Y"))->dims(),
Q
Qiao Longfei 已提交
72
                   "the shape of Input(0) and Input(1) should be the same");
73
    ctx.Output<Tensor>(framework::GradVarName("X"))
Q
Qiao Longfei 已提交
74
        ->Resize(ctx.Input<Tensor>("Y")->dims());
D
dongzhihong 已提交
75 76 77
  }
};

78 79 80
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
81
namespace ops = paddle::operators;
D
dongzhihong 已提交
82

83 84
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
            ops::SoftmaxOpGrad);
D
dongzhihong 已提交
85 86 87 88
REGISTER_OP_CPU_KERNEL(softmax,
                       ops::SoftmaxKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad, ops::SoftmaxGradKernel<paddle::platform::CPUPlace, float>);