uniform_random_op.cu 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
16
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/uniform_random_op.h"
Q
qijun 已提交
20 21 22 23 24 25 26
namespace paddle {
namespace operators {

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;
27 28 29 30 31 32 33 34 35 36 37
  T diag_val_;
  unsigned int diag_num_;
  unsigned int diag_step_;
  __host__ __device__ UniformGenerator(T min, T max, int seed, int diag_num,
                                       int diag_step, T diag_val)
      : min_(min),
        max_(max),
        seed_(seed),
        diag_num_(diag_num),
        diag_step_(diag_step),
        diag_val_(diag_val) {}
Q
qijun 已提交
38 39 40 41 42 43

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
44 45 46 47 48 49
    T out = dist(rng);
    unsigned int remainder = n % (diag_step_ + 1);
    if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
      out = diag_val_;
    }
    return out;
Q
qijun 已提交
50 51 52 53 54 55 56
  }
};

// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
57
class GPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
58 59
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yancey1989 已提交
60
    framework::Tensor* tensor = nullptr;
Y
fix ci  
Yancey1989 已提交
61
    auto out_var = context.OutputVar("Out");
62 63 64 65 66 67
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        context.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || context.HasInput("ShapeTensor")) {
      if (context.HasInput("ShapeTensor")) {
        auto* shape_tensor = context.Input<framework::Tensor>("ShapeTensor");
68
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
69
      } else if (list_new_shape_tensor.size() > 0) {
70
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
71 72 73 74 75 76
      }
    }

    if (out_var->IsType<framework::SelectedRows>()) {
      auto* selected_rows = out_var->GetMutable<framework::SelectedRows>();
      tensor = selected_rows->mutable_value();
T
tangwei12 已提交
77
      auto shape = context.Attr<std::vector<int64_t>>("shape");
78
      if (!new_shape.empty()) shape = new_shape;
Y
Yancey1989 已提交
79
      tensor->Resize(framework::make_ddim(shape));
80 81 82 83
      selected_rows->mutable_rows()->reserve(shape[0]);
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
      if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
Y
Yancey1989 已提交
84
    } else {
Y
Yancey1989 已提交
85 86
      PADDLE_THROW(
          "uniform_random_op's output only"
T
tangwei12 已提交
87
          "supports SelectedRows and LoDTensor");
Y
Yancey1989 已提交
88
    }
Q
qijun 已提交
89
    T* data = tensor->mutable_data<T>(context.GetPlace());
Y
Pass CI  
Yu Yang 已提交
90
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
91 92 93 94 95 96 97 98
    if (framework::Generator::GetInstance()->is_init_py) {
      seed = static_cast<unsigned int>(
          framework::Generator::GetInstance()->GetCurrentSeed());
    } else {
      if (seed == 0) {
        std::random_device rd;
        seed = rd();
      }
Q
qijun 已提交
99
    }
Y
Yu Yang 已提交
100 101
    T min = static_cast<T>(context.Attr<float>("min"));
    T max = static_cast<T>(context.Attr<float>("max"));
102 103 104 105 106
    unsigned int diag_num =
        static_cast<unsigned int>(context.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(context.Attr<int>("diag_step"));
    T diag_val = static_cast<T>(context.Attr<float>("diag_val"));
Q
qijun 已提交
107
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
108
    int64_t size = tensor->numel();
109 110 111 112
    thrust::transform(
        index_sequence_begin, index_sequence_begin + size,
        thrust::device_ptr<T>(data),
        UniformGenerator<T>(min, max, seed, diag_num, diag_step, diag_val));
Q
qijun 已提交
113 114 115 116 117
  }
};

}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
118

119 120 121 122 123 124
REGISTER_OP_CUDA_KERNEL(uniform_random,
                        paddle::operators::GPUUniformRandomKernel<float>,
                        paddle::operators::GPUUniformRandomKernel<double>);
REGISTER_OP_CUDA_KERNEL(uniform_random_batch_size_like,
                        paddle::operators::GPUUniformRandomKernel<float>,
                        paddle::operators::GPUUniformRandomKernel<double>);