layer.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
16

17 18 19 20 21 22 23 24
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/operator.h"
M
minqiyang 已提交
26 27 28
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/device_context.h"
29 30 31 32 33
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace imperative {

X
Xin Pan 已提交
34 35
std::map<int, py::object> py_funcs_;

36 37
using framework::Variable;

M
minqiyang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
namespace detail {

template <typename T>
class TensorAddToFunctor : public boost::static_visitor<> {
 public:
  TensorAddToFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas =
        operators::math::GetBlas<platform::CPUDeviceContext, float>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

#ifdef PADDLE_WITH_CUDA
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas =
        operators::math::GetBlas<platform::CUDADeviceContext, float>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }
#endif

  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

}  // namespace detail

void AddGradTo(Variable* src, Variable* dst, platform::Place place) {
  framework::Tensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  framework::Tensor* src_tensor = src->GetMutable<framework::LoDTensor>();

M
minqiyang 已提交
86 87 88 89 90
  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (src_tensor->numel() == 0) {
    return;
  }
M
minqiyang 已提交
91

92 93 94
  PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
                 "dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
                 src_tensor->numel());
M
minqiyang 已提交
95 96 97 98 99

  detail::TensorAddToFunctor<float> func(
      src_tensor->numel(), src_tensor->data<float>(),
      dst_tensor->mutable_data<float>(place));
  boost::apply_visitor(func, place);
100 101 102 103
}

class Autograd {
 public:
X
Xin Pan 已提交
104
  Autograd() {}
105 106

  void RunBackward(VarBase* var) {
107 108 109
    if (var->stop_gradient_) {
      return;
    }
X
Xin Pan 已提交
110
    VLOG(3) << "start autograd";
111 112 113 114 115 116 117 118 119

    std::deque<OpBase*> ready;
    ready.push_back(var->pre_op_);

    std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);

    while (!ready.empty()) {
      OpBase* ready_op = ready.front();
      ready.pop_front();
X
Xin Pan 已提交
120 121 122 123 124 125 126
      std::map<std::string, std::vector<VarBase*>> input_grads =
          ready_op->ApplyGrad();

      for (auto it : input_grads) {
        const std::vector<VarBase*>& ingrads = it.second;
        for (size_t i = 0; i < ingrads.size(); ++i) {
          if (!ingrads[i]) continue;
127 128 129
          if (ready_op->input_vars_[it.first][i]->stop_gradient_) {
            continue;
          }
X
Xin Pan 已提交
130
          OpBase* pre_op = ready_op->pre_ops_[it.first][i];
X
Xin Pan 已提交
131 132 133 134 135 136 137 138
          if (!pre_op) continue;

          dep_counts[pre_op] -= 1;
          PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
          bool pre_op_ready = dep_counts[pre_op] == 0;
          if (pre_op_ready) {
            ready.push_back(pre_op);
          }
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        }
      }
    }
  }

 private:
  std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
X
Xin Pan 已提交
155
      for (auto it : candidate->pre_ops_) {
X
Xin Pan 已提交
156 157 158 159 160 161 162
        for (OpBase* pre_op : it.second) {
          if (!pre_op) continue;
          if (visited.find(pre_op) == visited.end()) {
            visited.insert(pre_op);
            queue.push_back(pre_op);
          }
          ret[pre_op] += 1;
163 164 165 166 167 168 169
        }
      }
    }
    return ret;
  }
};

M
minqiyang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
framework::LoDTensor* VarBase::CopiedTensor() const {
  PADDLE_ENFORCE(var_->IsInitialized(),
                 "Variable must be initialized when getting numpy tensor");
  platform::Place place = var_->Get<framework::LoDTensor>().place();
  framework::LoDTensor* result = new framework::LoDTensor();
  result->Resize(var_->Get<framework::LoDTensor>().dims());
  result->set_lod(var_->Get<framework::LoDTensor>().lod());
  if (platform::is_gpu_place(place)) {
    VLOG(3) << "fetch tensor " << var_desc_->Name() << " from gpu";

    framework::TensorCopy(var_->Get<framework::LoDTensor>(),
                          platform::CPUPlace(), result);

    platform::DeviceContext* dev_ctx =
        platform::DeviceContextPool::Instance().Get(place);
    dev_ctx->Wait();
  } else {
    TensorCopy(var_->Get<framework::LoDTensor>(), platform::CPUPlace(), result);
  }

  return result;
}

M
minqiyang 已提交
193
framework::LoDTensor& VarBase::GradValue() {
194
  VLOG(3) << "get var grad " << var_desc_->Name();
M
minqiyang 已提交
195
  return *(grads_->var_->GetMutable<framework::LoDTensor>());
196 197
}

X
Xin Pan 已提交
198
std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
M
minqiyang 已提交
199 200 201 202 203 204 205
  VLOG(3) << "ApplyGrad to Op: " << op_desc_->Type();
  for (auto it : input_vars_) {
    for (VarBase* var : it.second) {
      VLOG(3) << "Op Input: " << it.first << " : " << var->var_desc_->Name();
    }
  }

X
Xin Pan 已提交
206
  if (!grad_op_desc_ && backward_id_ <= 0) {
207
    LOG(WARNING) << "op with no grad: " << op_desc_->Type();
X
Xin Pan 已提交
208
    return {};
209 210
  }

X
Xin Pan 已提交
211
  std::map<std::string, std::vector<framework::Variable*>> grad_outputs;
X
Xin Pan 已提交
212 213
  if (backward_id_ > 0) {
    VLOG(3) << "py_layer_grad";
X
polish  
Xin Pan 已提交
214 215
    grad_outputs["Out@GRAD"] =
        PyLayer::ApplyGrad(backward_id_, grad_input_vars_["X@GRAD"]);
X
Xin Pan 已提交
216 217
  } else {
    VLOG(3) << "op grad " << grad_op_desc_->Type();
X
polish  
Xin Pan 已提交
218 219 220 221 222 223 224 225
    for (auto it : grad_output_vars_) {
      auto& outputs = grad_outputs[it.first];
      for (size_t i = 0; i < it.second.size(); ++i) {
        // Allocate a new variable
        Variable* tmp_var = new framework::Variable();
        tmp_var->GetMutable<framework::LoDTensor>();
        outputs.push_back(tmp_var);
      }
226 227
    }

X
Xin Pan 已提交
228
    framework::RuntimeContext ctx(grad_input_vars_, grad_outputs);
229

X
Xin Pan 已提交
230 231 232
    // No need to do compile time infer shape here.
    // grad_op_desc_->InferShape(*block_);
    grad_op_desc_->InferVarType(block_);
X
Xin Pan 已提交
233

X
Xin Pan 已提交
234 235 236 237 238
    std::unique_ptr<framework::OperatorBase> opbase =
        framework::OpRegistry::CreateOp(*grad_op_desc_);
    framework::OperatorWithKernel* op_kernel =
        dynamic_cast<framework::OperatorWithKernel*>(opbase.get());
    PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
X
Xin Pan 已提交
239

X
Xin Pan 已提交
240
    framework::Scope scope;
M
minqiyang 已提交
241
    platform::Place place = expected_place_;
X
Xin Pan 已提交
242 243 244 245
    PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
    p.op.RuntimeInferShape(scope, place, ctx);
    p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
  }
X
Xin Pan 已提交
246 247 248 249

  for (auto it : grad_output_vars_) {
    auto& outputs = grad_outputs[it.first];
    auto& origin_outputs = it.second;
X
polish  
Xin Pan 已提交
250
    PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size());
251

X
Xin Pan 已提交
252
    for (size_t i = 0; i < outputs.size(); ++i) {
X
polish  
Xin Pan 已提交
253
      framework::Variable* grad = outputs[i];
M
minqiyang 已提交
254
      framework::Variable* orig_grad = origin_outputs[i];
M
minqiyang 已提交
255 256 257
      LOG(ERROR) << "Add grad of " << it.first << " " << i << " "
                 << orig_grad->GetMutable<framework::LoDTensor>()->mutable_data(
                        expected_place_);
M
minqiyang 已提交
258
      AddGradTo(grad, orig_grad, expected_place_);
X
polish  
Xin Pan 已提交
259
      delete grad;
260 261
    }
  }
X
Xin Pan 已提交
262
  return input_vars_;
263 264
}

X
Xin Pan 已提交
265
void VarBase::RunBackward() {
266
  if (!pre_op_) return;
X
Xin Pan 已提交
267

X
Xin Pan 已提交
268
  VLOG(3) << "start backward";
M
minqiyang 已提交
269
  auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
M
minqiyang 已提交
270 271 272 273
  operators::math::set_constant(
      *(platform::DeviceContextPool::Instance().Get(
          var_->GetMutable<framework::LoDTensor>()->place())),
      grads_t, 1.0);
X
Xin Pan 已提交
274

X
Xin Pan 已提交
275 276 277
  PADDLE_ENFORCE(
      grads_ ==
      pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_);
X
Xin Pan 已提交
278
  Autograd().RunBackward(this);
279 280
}

X
Xin Pan 已提交
281 282 283 284
void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
  py_funcs_[func_id] = py_func;
}

X
polish  
Xin Pan 已提交
285 286
int PyLayer::NumFuncs() { return py_funcs_.size(); }

X
Xin Pan 已提交
287
std::vector<VarBase*> PyLayer::Apply(int func_id,
X
Xin Pan 已提交
288
                                     const std::vector<VarBase*>& inputs) {
X
polish  
Xin Pan 已提交
289
  std::vector<framework::Variable*> invars;
X
Xin Pan 已提交
290
  for (const VarBase* in : inputs) {
X
polish  
Xin Pan 已提交
291
    invars.push_back(in->var_);
X
Xin Pan 已提交
292 293
  }
  PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
X
polish  
Xin Pan 已提交
294 295 296
  std::vector<Variable*> outvars = CallPythonFunc(py_funcs_[func_id], invars);
  std::vector<VarBase*> ret;
  for (Variable* v : outvars) {
297
    ret.push_back(new VarBase(v, new VarBase(true)));
X
polish  
Xin Pan 已提交
298
  }
X
Xin Pan 已提交
299 300 301
  return ret;
}

X
polish  
Xin Pan 已提交
302 303 304 305 306
std::vector<Variable*> PyLayer::ApplyGrad(
    int func_id, const std::vector<framework::Variable*>& inputs) {
  PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
  return CallPythonFunc(py_funcs_[func_id], inputs);
}
X
Xin Pan 已提交
307

X
polish  
Xin Pan 已提交
308 309 310 311 312 313 314
std::vector<framework::Variable*> PyLayer::CallPythonFunc(
    const py::object& callable, const std::vector<framework::Variable*>& ins) {
  py::gil_scoped_acquire guard;
  py::tuple in_args(ins.size());
  for (size_t i = 0; i < ins.size(); ++i) {
    const framework::LoDTensor& t = ins[i]->Get<framework::LoDTensor>();
    in_args[i] = t.IsInitialized() ? py::cast(t) : py::cast(nullptr);
X
Xin Pan 已提交
315
  }
X
polish  
Xin Pan 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  VLOG(3) << "pyfunc in " << py::len(in_args);

  // TODO(panyx0718): Who owns the returned LoDTensor.
  auto ret = callable(in_args);
  auto ret_tuple = py::cast<py::tuple>(ret);
  size_t ret_num = py::len(ret_tuple);
  std::vector<framework::Variable*> outs;
  VLOG(3) << "pyfunc out " << ret_num;
  for (size_t i = 0; i < ret_num; ++i) {
    try {
      auto* py_out_tensor = py::cast<framework::LoDTensor*>(ret_tuple[i]);
      PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
                              "Output tensor %d should not be nullptr", i);
      auto* var = new framework::Variable();
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      tensor->ShareDataWith(*py_out_tensor);
      tensor->set_lod(py_out_tensor->lod());
      outs.push_back(var);
    } catch (py::cast_error&) {
      PADDLE_THROW("The %d-th output must be LoDTensor", i);
    }
  }
  return outs;
X
Xin Pan 已提交
339 340
}

341 342
}  // namespace imperative
}  // namespace paddle