test_memcpy_op.py 8.9 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import op_test
import numpy as np
import unittest
import paddle
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.backward import append_backward


class TestMemcpy_FillConstant(unittest.TestCase):
27

J
JZ-LIANG 已提交
28 29 30 31 32 33 34 35 36 37 38 39
    def get_prog(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            pinned_var_name = "tensor@Pinned"
            gpu_var_name = "tensor@GPU"
            pinned_var = main_program.global_block().create_var(
                name=pinned_var_name,
                shape=[10, 10],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
40 41 42 43 44 45 46 47 48 49 50 51 52
            gpu_var = main_program.global_block().create_var(name=gpu_var_name,
                                                             shape=[10, 10],
                                                             dtype='float32',
                                                             persistable=False,
                                                             stop_gradient=True)
            main_program.global_block().append_op(type="fill_constant",
                                                  outputs={"Out": gpu_var_name},
                                                  attrs={
                                                      "shape": [10, 10],
                                                      "dtype": gpu_var.dtype,
                                                      "value": 1.0,
                                                      "place_type": 1
                                                  })
J
JZ-LIANG 已提交
53 54 55 56 57 58 59 60 61 62 63
            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": pinned_var_name},
                attrs={
                    "shape": [10, 10],
                    "dtype": gpu_var.dtype,
                    "value": 0.0,
                    "place_type": 2
                })
        return main_program, gpu_var, pinned_var

64
    def test_gpu_copy_to_pinned(self):
J
JZ-LIANG 已提交
65
        main_program, gpu_var, pinned_var = self.get_prog()
66 67 68 69
        main_program.global_block().append_op(type='memcpy',
                                              inputs={'X': gpu_var},
                                              outputs={'Out': pinned_var},
                                              attrs={'dst_place_type': 2})
J
JZ-LIANG 已提交
70 71 72 73 74
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        gpu_, pinned_ = exe.run(main_program,
                                feed={},
                                fetch_list=[gpu_var.name, pinned_var.name])
75 76
        np.testing.assert_allclose(gpu_, pinned_, rtol=1e-05)
        np.testing.assert_allclose(pinned_, np.ones((10, 10)), rtol=1e-05)
J
JZ-LIANG 已提交
77

78
    def test_pinned_copy_gpu(self):
J
JZ-LIANG 已提交
79
        main_program, gpu_var, pinned_var = self.get_prog()
80 81 82 83
        main_program.global_block().append_op(type='memcpy',
                                              inputs={'X': pinned_var},
                                              outputs={'Out': gpu_var},
                                              attrs={'dst_place_type': 1})
J
JZ-LIANG 已提交
84 85 86 87 88
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        gpu_, pinned_ = exe.run(main_program,
                                feed={},
                                fetch_list=[gpu_var.name, pinned_var.name])
89 90
        np.testing.assert_allclose(gpu_, pinned_, rtol=1e-05)
        np.testing.assert_allclose(gpu_, np.zeros((10, 10)), rtol=1e-05)
J
JZ-LIANG 已提交
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    def test_hip_copy_bool_value(self):
        if core.is_compiled_with_rocm():
            paddle.enable_static()
            main_program = Program()
            with program_guard(main_program):
                pinned_var_name = "tensor@Pinned"
                gpu_var_name = "tensor@GPU"
                pinned_var = main_program.global_block().create_var(
                    name=pinned_var_name,
                    shape=[1],
                    dtype='bool',
                    persistable=False,
                    stop_gradient=True)
                gpu_var = main_program.global_block().create_var(
                    name=gpu_var_name,
                    shape=[1],
                    dtype='bool',
                    persistable=False,
                    stop_gradient=True)
                main_program.global_block().append_op(
                    type="fill_constant",
                    outputs={"Out": gpu_var_name},
                    attrs={
                        "shape": [1],
                        "dtype": gpu_var.dtype,
                        "value": False,
                        "place_type": 1
                    })
                main_program.global_block().append_op(
                    type="fill_constant",
                    outputs={"Out": pinned_var_name},
                    attrs={
                        "shape": [1],
                        "dtype": gpu_var.dtype,
                        "value": True,
                        "place_type": 2
                    })

130 131 132 133
            main_program.global_block().append_op(type='memcpy',
                                                  inputs={'X': pinned_var},
                                                  outputs={'Out': gpu_var},
                                                  attrs={'dst_place_type': 1})
134 135 136 137 138 139
            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            gpu_, pinned_ = exe.run(main_program,
                                    feed={},
                                    fetch_list=[gpu_var.name, pinned_var.name])
            expect_value = np.array([1]).astype('bool')
140
            np.testing.assert_array_equal(gpu_, expect_value)
141 142 143
        else:
            pass

J
JZ-LIANG 已提交
144 145

class TestMemcpyOPError(unittest.TestCase):
146

J
JZ-LIANG 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    def get_prog(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            pinned_var = main_program.global_block().create_var(
                name="tensor@Pinned_0",
                shape=[10, 10],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": "tensor@Pinned_0"},
                attrs={
                    "shape": [10, 10],
                    "dtype": pinned_var.dtype,
                    "value": 0.0,
                    "place_type": 2
                })
        return main_program, pinned_var

    def test_SELECTED_ROWS(self):
        main_program, pinned_var = self.get_prog()
        selected_row_var = main_program.global_block().create_var( \
            name="selected_row_0", dtype="float32", persistable=False, \
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS, stop_gradient=True)
173 174 175 176 177 178 179 180 181 182
        main_program.global_block().append_op(type="fill_constant",
                                              outputs={"Out": selected_row_var},
                                              attrs={
                                                  "shape":
                                                  selected_row_var.shape,
                                                  "dtype":
                                                  selected_row_var.dtype,
                                                  "value": 1.0,
                                                  "place_type": 1
                                              })
183 184 185 186 187 188
        with self.assertRaises(RuntimeError):
            main_program.global_block().append_op(
                type='memcpy',
                inputs={'X': selected_row_var},
                outputs={'Out': pinned_var},
                attrs={'dst_place_type': 2})
J
JZ-LIANG 已提交
189 190 191 192 193 194 195 196
            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            selected_row_var_, pinned_ = exe.run(
                main_program,
                feed={},
                fetch_list=[selected_row_var.name, pinned_var.name])


197
class TestMemcpyApi(unittest.TestCase):
198

199 200 201
    def test_api(self):
        a = paddle.ones([1024, 1024])
        b = paddle.tensor.creation._memcpy(a, paddle.CUDAPinnedPlace())
202
        self.assertEqual(b.place.__repr__(), "Place(gpu_pinned)")
203
        np.testing.assert_array_equal(a.numpy(), b.numpy())
204 205


J
JZ-LIANG 已提交
206 207 208
if __name__ == '__main__':
    paddle.enable_static()
    unittest.main()