beam_search_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16
#include "paddle/fluid/operators/beam_search_op.h"

17 18
#include <string>
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
20 21 22 23

namespace paddle {
namespace operators {

K
ktlichkid 已提交
24
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yan Chunwei 已提交
25
 public:
Y
Yu Yang 已提交
26
  void Make() override {
Y
Yan Chunwei 已提交
27
    // inputs and outputs stored in proto
28 29 30 31
    AddInput("pre_ids",
             "(LoDTensor) The LoDTensor containing the selected ids at the "
             "previous step. It should be a tensor with shape (batch_size, 1) "
             "and lod `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at "
32
             "the first step.");
33 34 35 36 37
    AddInput("pre_scores",
             "(LoDTensor) The LoDTensor containing the accumulated "
             "scores corresponding to the selected ids at the previous step.");
    AddInput("ids",
             "(LoDTensor) The LoDTensor containing the candidates ids. Its "
38 39 40
             "shape should be (batch_size * beam_size, W). If not set, it will "
             "be calculated out according to Input(scores) in this operator.")
        .AsDispensable();
Y
Yan Chunwei 已提交
41
    AddInput("scores",
42 43 44 45 46 47 48
             "(LoDTensor) The LoDTensor containing the current scores "
             "corresponding to Input(ids). If Input(ids) is not nullptr, its "
             "shape is the same as that of Input(ids)."
             "If is_accumulated is true, Input(scores) is accumulated scores "
             "and will be used derectedly. Else, each score will be "
             "transformed to the log field and accumulate Input(pre_sores) "
             "first.");
Y
Yan Chunwei 已提交
49
    AddOutput("selected_ids",
50 51 52 53
              "A LodTensor that stores the IDs selected by beam search.");
    AddOutput("selected_scores",
              "A LoDTensor containing the accumulated scores corresponding to "
              "Output(selected_ids).");
Y
Yan Chunwei 已提交
54 55 56 57 58 59

    // Attributes stored in AttributeMap
    AddAttr<int>("level", "the level of LoDTensor");
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");
60 61 62
    AddAttr<bool>("is_accumulated",
                  "Whether the Input(scores) is accumulated scores.")
        .SetDefault(true);
Y
Yan Chunwei 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    AddComment(R"DOC(
This operator does the search in beams for one time step. 
Specifically, it selects the top-K candidate word ids of current step from
Input(ids) according to their Input(scores) for all source sentences,
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
from the computation cell. Additionally, Input(pre_ids) and Input(pre_scores)
are the output of beam_search at previous step, they are needed for special use
to handle ended candidate translations. The paths linking prefixes and selected
candidates are organized and reserved in lod.

Note that the Input(scores) passed in should be accumulated scores, and
length penalty should be done with extra operators before calculating the
accumulated scores if needed, also suggest finding top-K before it and
using the top-K candidates following.
)DOC");
Y
Yan Chunwei 已提交
79 80 81
  }
};

K
ktlichkid 已提交
82
class BeamSearchOp : public framework::OperatorWithKernel {
K
ktlichkid 已提交
83 84
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
K
ktlichkid 已提交
85

K
ktlichkid 已提交
86
  void InferShape(framework::InferShapeContext *ctx) const override {
K
ktlichkid 已提交
87
    for (const std::string &arg :
88
         std::vector<std::string>({"pre_ids", "scores"})) {
K
ktlichkid 已提交
89 90
      PADDLE_ENFORCE(ctx->HasInput(arg), "BeamSearch need input argument '%s'",
                     arg);
K
ktlichkid 已提交
91 92 93
    }
    for (const std::string &arg :
         std::vector<std::string>({"selected_ids", "selected_scores"})) {
K
ktlichkid 已提交
94
      PADDLE_ENFORCE(ctx->HasOutput(arg),
K
ktlichkid 已提交
95 96
                     "BeamSearch need output argument '%s'", arg);
    }
97 98
  }

99
 protected:
100 101
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
102 103 104 105 106 107 108 109 110 111 112 113 114
    auto *scores = ctx.Input<framework::LoDTensor>("scores");
    size_t level = ctx.Attr<int>("level");
    size_t batch_size = scores->lod()[level].size() - 1;
    // The current CUDA kernel only support cases with batch_size < 4.
    // Compute on CPU for cases with batch_size > 4.
    if (batch_size <= 4) {
      return framework::OpKernelType(
          ctx.Input<framework::LoDTensor>("pre_ids")->type(), ctx.GetPlace());
    } else {
      return framework::OpKernelType(
          ctx.Input<framework::LoDTensor>("pre_ids")->type(),
          platform::CPUPlace());
    }
K
ktlichkid 已提交
115 116 117
  }
};

Q
Qiao Longfei 已提交
118 119 120 121 122
class BeamSearchInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
    for (auto &o : op_desc.Output("selected_ids")) {
123 124
      auto &selected_ids = block->FindRecursiveOrCreateVar(o);
      selected_ids.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
125 126
    }
    for (auto &o : op_desc.Output("selected_scores")) {
127 128
      auto &selected_scores = block->FindRecursiveOrCreateVar(o);
      selected_scores.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
129 130 131
    }
  }
};
K
ktlichkid 已提交
132

Y
Yan Chunwei 已提交
133 134
}  // namespace operators
}  // namespace paddle
K
ktlichkid 已提交
135

K
ktlichkid 已提交
136
namespace ops = paddle::operators;
K
ktlichkid 已提交
137 138 139

REGISTER_OPERATOR(beam_search, ops::BeamSearchOp, ops::BeamSearchOpMaker,
                  ops::BeamSearchInferVarType);
K
ktlichkid 已提交
140 141 142
REGISTER_OP_CPU_KERNEL(
    beam_search,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, float>,
K
ktlichkid 已提交
143 144 145
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int64_t>);