softmax_with_cross_entropy_op.cu 44.5 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
6 7 8 9 10
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
11 12 13 14 15 16 17
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
18
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
S
sneaxiy 已提交
19
#include "paddle/fluid/operators/math/cross_entropy.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/platform/for_range.h"
24
#include "paddle/phi/kernels/funcs/math_function.h"
25
#include "paddle/phi/kernels/gpudnn/softmax_gpudnn.h"
26

C
caoying03 已提交
27 28 29
namespace paddle {
namespace operators {

30 31
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
C
caoying03 已提交
32 33
using Tensor = framework::Tensor;

34
// Wrapper of log function. Use log(float32) for float16
35
template <typename T>
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static __device__ __forceinline__ T Log(T x) {
  using AccT = typename details::MPTypeTrait<T>::Type;
  AccT logx = std::log(static_cast<AccT>(x));
  return math::TolerableValue<T>()(static_cast<T>(logx));
}

// Wrapper of exp function. Use exp(float32) for float16
template <typename T>
static __device__ __forceinline__ T Exp(T x) {
  using AccT = typename details::MPTypeTrait<T>::Type;
  AccT expx = std::exp(static_cast<AccT>(x));
  return math::TolerableValue<T>()(static_cast<T>(expx));
}

// log2(value)
static inline int Log2Ceil(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

enum class SoftmaxMode { kSoftmax, kLogSoftmax, kCrossEntropy };

/*
  Hard label cross entropy.
*/
62
template <typename T, typename LabelT, bool IgnoreIndex>
63
__global__ void CrossEntropyHardLabel(T* loss, const T* softmax,
64
                                      const LabelT* labels, const int n,
65 66 67 68 69 70 71 72
                                      const int dim, const int d,
                                      const int ignore_idx) {
  int64_t ids = blockIdx.x * blockDim.x + threadIdx.x;
  int64_t idx_n = ids / d;
  int64_t idx_d = ids % d;

  // thread ids compute loss[ids] using softmax[idx]
  if (ids < n * d) {
73 74
    auto lbl = static_cast<int64_t>(labels[ids]);
    if (lbl < 0) {  // label is negative
75 76
      loss[ids] = static_cast<T>(0.0);
    } else {  // label is positive of zero
77
      int64_t idx = idx_n * dim * d + lbl * d + idx_d;
78 79
      if (IgnoreIndex == true) {
        // IgnoreIndex is true
80
        if (lbl == ignore_idx) {
81 82 83 84
          loss[ids] = static_cast<T>(0.0);
        } else {
          loss[ids] = -Log(softmax[idx]);
        }
85
      } else {
86
        // IgnoreIndex is false
87 88 89 90 91 92 93 94 95 96 97
        loss[ids] = -Log(softmax[idx]);
      }
    }
  }
}

/*
  Hard label cross entropy with exp.
  Input: log softmax
  Output: loss and exp(input)
*/
98
template <typename T, typename LabelT, bool IgnoreIndex>
99
__global__ void CrossEntropyExpHardLabel(T* loss, T* softmax,
100
                                         const LabelT* labels, const int n,
101 102 103 104 105 106 107 108 109
                                         const int dim, const int d,
                                         const int ignore_idx) {
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  int64_t idx_n = idx / (d * dim);
  int64_t idx_dim = (idx / d) % dim;
  int64_t idx_d = idx % d;
  int64_t ids = idx_n * d + idx_d;

  if (idx < n * dim * d) {
110
    auto lbl = static_cast<int64_t>(labels[ids]);
111 112
    if (IgnoreIndex == true) {
      // IgnoreIndex is true
113 114
      if (idx_dim == lbl) {
        if (lbl == ignore_idx) {
115 116 117 118 119 120 121
          loss[ids] = static_cast<T>(0.0);
        } else {
          loss[ids] = -softmax[idx];
        }
      }
    } else {
      // IgnoreIndex is false
122 123
      if (lbl >= 0 && lbl < dim) {
        if (lbl == idx_dim) {
124 125 126 127 128
          loss[ids] = -softmax[idx];
        }
      } else {
        loss[ids] = static_cast<T>(0.0);
      }
129
    }
130
    softmax[idx] = Exp(softmax[idx]);
131 132 133
  }
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
  Core function of softmax with cross entropy forward
    - softmax, SoftmaxMode=kSoftmax
    - log softmax, SoftmaxMode=kLogSoftmax
    - softmax with cross entropy hard label, SoftmaxMode=kCrossEntropy
  The computation includes
    - Compute max value: maxvalue_{i} = max_j src_{i,j}
    - Compute sum of exp: s_{i} = sum_{j}{e^{src_{i,j} - maxvalue_{i}}}
    - Compute: softmax_{i,j} = e^{src_{i,j} - maxvalue_{i}} / s_{i}
    - Compute: logsoftmax_{i,j} = src_{i,j} - maxvalue_{i} - log(s_{i})
    - Compute: loss_{i} = -logsoftmax[i,label[i]] (Hard label)
  This computation results from following formula:
    softmax_{i,j} = e^{src_{i,j}} / sum_{j}{e^{src_{i,j}}}
                  = e^{src_{i,j} - maxvalue_{i}}
                    / sum_{j}{e^{src_{i,j} - maxvalue_{i}}}
                  = e^{src_{i,j} - maxvalue_{i}} / s_{i}
    logsoftmax_{i,j} = log(softmax_{i,j})
                     = src_{i,j} - maxvalue_{i} - log(s_{i})
  One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
  For reduction max (sum), firstly compute max (sum) to one warp, then use
  shuffle api to compute max (sum) in one warp.
*/
156 157
template <typename T, typename LabelT, typename VecT, typename AccT,
          int Log2Elements, SoftmaxMode mode, bool IgnoreIndex>
158
__global__ void WarpSoftmaxForward(T* loss, T* softmax, const T* src,
159
                                   const LabelT* label, const int batch_size,
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                                   const int stride, const int element_count,
                                   const int ignore_index) {
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kIterations = kDimCeil / kWarpSize;
  constexpr int kIterationsV =
      (kIterations >= kVSize) ? (kIterations / kVSize) : 1;
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;

  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
  }

  // read data from global memory
  AccT srcdata[kBatchSize][kIterationsV][kVSize];

#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
// read data to srcdata: - KVSize==1, - KVSize>1
#pragma unroll
    for (int it = 0; it < kIterationsV; ++it) {
      int src_idx = threadIdx.x + it * kWarpSize;
      if (kVSize == 1) {
        if (src_idx < idx_max_v[i]) {
          srcdata[i][it][0] =
              static_cast<AccT>(src[(first_batch + i) * stride + src_idx]);
        } else {
          srcdata[i][it][0] = -std::numeric_limits<AccT>::infinity();
        }
      } else {
        const VecT* src_v =
            reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
        if (src_idx < idx_max_v[i]) {
          VecT srctmp = src_v[src_idx];
          const T* srcinptr = reinterpret_cast<const T*>(&srctmp);
#pragma unroll
          for (int s = 0; s < kVSize; s++) {
            srcdata[i][it][s] = static_cast<AccT>(srcinptr[s]);
          }
        } else {
#pragma unroll
          for (int s = 0; s < kVSize; s++) {
            srcdata[i][it][s] = -std::numeric_limits<AccT>::infinity();
          }
        }
      }
    }
  }

  // compute max value: maxvalue_{i} = max_j src_{i,j}
  AccT max_value[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    // it = 0
    AccT valmax = srcdata[i][0][0];
#pragma unroll
    for (int s = 1; s < kVSize; ++s) {
      valmax = (valmax > srcdata[i][0][s]) ? valmax : srcdata[i][0][s];
    }
    max_value[i] = valmax;

// it = 1, 2, ...
#pragma unroll
    for (int it = 1; it < kIterationsV; ++it) {
      AccT valmax = srcdata[i][it][0];
#pragma unroll
      for (int s = 1; s < kVSize; ++s) {
        valmax = (valmax > srcdata[i][it][s]) ? valmax : srcdata[i][it][s];
      }
      max_value[i] = (max_value[i] > valmax) ? max_value[i] : valmax;
    }
  }
239
  phi::WarpReduceMax<AccT, kBatchSize, kWarpSize>(max_value);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

  // compute sum: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  AccT sum[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    // it = 0
    if (mode == SoftmaxMode::kLogSoftmax ||
        mode == SoftmaxMode::kCrossEntropy) {
      sum[i] = std::exp(srcdata[i][0][0] - max_value[i]);
    } else {
      srcdata[i][0][0] = std::exp(srcdata[i][0][0] - max_value[i]);
      sum[i] = srcdata[i][0][0];
    }
#pragma unroll
    for (int s = 1; s < kVSize; ++s) {
      if (mode == SoftmaxMode::kLogSoftmax ||
          mode == SoftmaxMode::kCrossEntropy) {
        sum[i] += std::exp(srcdata[i][0][s] - max_value[i]);
      } else {
        srcdata[i][0][s] = std::exp(srcdata[i][0][s] - max_value[i]);
        sum[i] += srcdata[i][0][s];
      }
    }

// it = 1, 2, ...
#pragma unroll
    for (int it = 1; it < kIterationsV; ++it) {
#pragma unroll
      for (int s = 0; s < kVSize; ++s) {
        if (mode == SoftmaxMode::kLogSoftmax ||
            mode == SoftmaxMode::kCrossEntropy) {
          sum[i] += std::exp(srcdata[i][it][s] - max_value[i]);
        } else {
          srcdata[i][it][s] = std::exp(srcdata[i][it][s] - max_value[i]);
          sum[i] += srcdata[i][it][s];
        }
      }
    }
  }
279
  phi::WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

// write data
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (mode == SoftmaxMode::kLogSoftmax ||
        mode == SoftmaxMode::kCrossEntropy) {
      sum[i] = std::log(sum[i]);
    }

#pragma unroll
    for (int it = 0; it < kIterationsV; ++it) {
      int idx = threadIdx.x + it * kWarpSize;
      if (kVSize == 1) {  // kVSize==1
        if (idx < idx_max_v[i]) {
          if (mode == SoftmaxMode::kLogSoftmax) {  // log softmax
            softmax[(first_batch + i) * stride + idx] =
                srcdata[i][it][0] - max_value[i] - sum[i];
            // softmax with cross entropy hard label
          } else if (mode == SoftmaxMode::kCrossEntropy) {
            AccT logsoftmax = srcdata[i][it][0] - max_value[i] - sum[i];
            // softmax
            softmax[(first_batch + i) * stride + idx] = std::exp(logsoftmax);
            // label
            int loss_idx = (threadIdx.x + it * kWarpSize) * kVSize;
304
            auto lbl = static_cast<int64_t>(label[first_batch + i]);
305 306
            if (IgnoreIndex == true) {
              // IgnoreIndex is true
307 308
              if (lbl == loss_idx) {
                if (lbl != ignore_index) {
309 310 311 312 313 314 315
                  loss[first_batch + i] = -logsoftmax;
                } else {
                  loss[first_batch + i] = static_cast<T>(0.0);
                }
              }
            } else {
              // IgnoreIndex is false
316 317
              if (lbl >= 0 && lbl < element_count) {
                if (lbl == loss_idx) {
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
                  loss[first_batch + i] = -logsoftmax;
                }
              } else {
                loss[first_batch + i] = static_cast<T>(0.0);
              }
            }
          } else {  // softmax
            softmax[(first_batch + i) * stride + idx] =
                srcdata[i][it][0] / sum[i];
          }
        } else {
          break;
        }
      } else {  // KVSize>1
        VecT* softmax_v =
            reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);
        VecT tmpdata;
        T* tmpptr = reinterpret_cast<T*>(&tmpdata);
#pragma unroll
        for (int s = 0; s < kVSize; ++s) {
          if (mode == SoftmaxMode::kLogSoftmax) {  // log softmax
            tmpptr[s] = srcdata[i][it][s] - max_value[i] - sum[i];
            // softmax with cross entropy hard label
          } else if (mode == SoftmaxMode::kCrossEntropy) {
            AccT logsoftmax = srcdata[i][it][s] - max_value[i] - sum[i];
            // softmax
            tmpptr[s] = std::exp(logsoftmax);
            // label
            int loss_idx = (threadIdx.x + it * kWarpSize) * kVSize + s;
347
            auto lbl = static_cast<int64_t>(label[first_batch + i]);
348 349
            if (IgnoreIndex == true) {
              // IgnoreIndex is true
350
              if (lbl == loss_idx && lbl != ignore_index) {
351 352 353 354
                loss[first_batch + i] = -logsoftmax;
              }
            } else {
              // IgnoreIndex is false
355 356
              if (lbl >= 0 && lbl < element_count) {
                if (lbl == loss_idx) {
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
                  loss[first_batch + i] = -logsoftmax;
                }
              } else {
                loss[first_batch + i] = static_cast<T>(0.0);
              }
            }
          } else {  // softmax
            tmpptr[s] = srcdata[i][it][s] / sum[i];
          }
        }
        if (idx < idx_max_v[i]) {
          softmax_v[idx] = tmpdata;
        } else {
          break;
        }
      }
    }
  }
}

377
#define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, LabelT, VecT, AccT)   \
378
  case Log2Elements:                                                  \
379
    WarpSoftmaxForward<T, LabelT, VecT, AccT, Log2Elements, mode,     \
380 381 382 383 384 385 386 387
                       IgnoreIndex><<<blocks, threads, 0, stream>>>(  \
        loss, softmax, src, label, batch_size, stride, element_count, \
        ignore_index);                                                \
    break;

/*
  Wrapper of softmax with cross entropy forward hard label.
*/
388
template <typename T, typename LabelT, SoftmaxMode mode, bool IgnoreIndex>
389
void SwitchWarpSoftmaxForward(T* loss, T* softmax, const T* src,
390
                              const LabelT* label, const int batch_size,
391 392 393 394 395
                              const int stride, const int element_count,
                              const int ignore_index, gpuStream_t stream) {
  using AccT = typename details::MPTypeTrait<T>::Type;

  // use 128 threads per block to maximimize gpu utilization
396 397
  const int log2_elements = static_cast<int>(Log2Ceil(element_count));
  const int kDimCeil = 1 << log2_elements;
398 399 400 401 402 403 404 405
  int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  int batches_per_warp = (kDimCeil <= 128) ? 2 : 1;
  constexpr int threads_per_block = 128;
  int warps_per_block = (threads_per_block / kWarpSize);
  int batches_per_block = warps_per_block * batches_per_warp;
  int blocks = (batch_size + batches_per_block - 1) / batches_per_block;
  dim3 threads(kWarpSize, warps_per_block, 1);

406
  switch (log2_elements) {
407 408 409 410 411 412 413 414 415 416
    SOFTMAX_WARP_FORWARD_CASE(0, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(1, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(2, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(3, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(4, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(5, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(6, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(7, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(8, LabelT, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(9, LabelT, T, AccT);
417 418 419 420 421 422 423 424 425 426
    default:
      break;
  }
}

/*
  Wrapper of softmax with cross entropy hard label.
  - SwitchWarpSoftmaxForward for small size
  - cudnn function for large size
*/
427
template <typename T, typename LabelT, bool IgnoreIndex>
428 429
static void SoftmaxWithCrossEntropyHardLabel(
    const platform::CUDADeviceContext& ctx, int rank, int axis,
430
    const T* logits_data, const LabelT* labels_data, T* loss_data,
431 432 433 434 435
    T* softmax_data, int N, int dim, int D, const int ignore_index) {
  auto stream = ctx.stream();
  constexpr int max_dim = 320;
  if (D == 1 && dim <= max_dim) {  // small size
    const SoftmaxMode mode = SoftmaxMode::kCrossEntropy;
436
    SwitchWarpSoftmaxForward<T, LabelT, mode, IgnoreIndex>(
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        loss_data, softmax_data, logits_data, labels_data, N, dim, dim,
        ignore_index, stream);
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
    DataLayout layout = DataLayout::kNCHW;
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t descp = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t descp = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
454
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSoftmaxForward_V2(
455 456 457 458 459 460
        handle, platform::CudnnDataType<T>::kOne(), descp, logits_data,
        platform::CudnnDataType<T>::kZero(), descp, softmax_data,
        MIOPEN_SOFTMAX_LOG, mode));
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
461
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSoftmaxForward(
462 463 464 465 466 467 468
        handle, CUDNN_SOFTMAX_LOG, mode, platform::CudnnDataType<T>::kOne(),
        descp, logits_data, platform::CudnnDataType<T>::kZero(), descp,
        softmax_data));
#endif
    int threads = 128;
    int blocks = (N * dim * D + threads - 1) / threads;
    // compute cross entropy, input is log softmax
469 470
    CrossEntropyExpHardLabel<T, LabelT,
                             IgnoreIndex><<<blocks, threads, 0, stream>>>(
471 472 473 474 475 476 477
        loss_data, softmax_data, labels_data, N, dim, D, ignore_index);
  }
}

/*
  Wrapper of softmax with cross entropy grad hard label.
*/
478
template <typename T, typename LabelT>
479
__global__ void SoftmaxWithCrossEntropyGradHardLabel(
480
    T* logits_grad, const T* loss_grad, const LabelT* labels, const int64_t n,
481 482 483 484 485 486 487 488
    const int64_t dim, const int64_t d, const int ignore_index) {
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  int64_t idx_n = idx / (d * dim);
  int64_t idx_dim = (idx / d) % dim;
  int64_t idx_d = idx % d;
  int64_t ids = idx_n * d + idx_d;

  if (idx < n * dim * d) {
489 490
    auto lbl = static_cast<int64_t>(labels[ids]);
    if (lbl == ignore_index) {
491
      logits_grad[idx] = static_cast<T>(0.0);
492
    } else if (lbl == idx_dim) {
493 494
      logits_grad[idx] =
          (logits_grad[idx] - static_cast<T>(1.0)) * loss_grad[ids];
495
    } else {
496
      logits_grad[idx] *= loss_grad[ids];
497
    }
498 499 500
  }
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/*
  Cross entropy soft label with dynamic size on axis (log2_elements is
  varibale).
  - if the input is softmax,compute loss with softmax
  - if the input is log_softmax, compute loss with log_softmax and update
  softmax
*/
template <typename T, typename VecT, bool InLogMode = false>
__global__ void CrossEntropySoftLabel(T* loss, T* softmaxwrt, const T* softmax,
                                      const T* labels, const int n,
                                      const int dim, const int d,
                                      int log2_elements) {
  const int kDimCeil = 1 << log2_elements;
  const int kVSize = sizeof(VecT) / sizeof(T);

#ifdef __HIPCC__
  const int kThreadPerBlock = 256;
#else
  const int kThreadPerBlock = 512;
#endif
  const int kBatchPerBlock = 1;
  const int kWarpSize = 32;  // (dim < 32) ? dim : 32;
  const int kBatchSize = 1;
  const int kThreadPerBatch = kThreadPerBlock / kBatchPerBlock;
  const int kWarpPerBatch = kThreadPerBatch / kWarpSize;

  const int kIterations = (dim + kThreadPerBatch - 1) / kThreadPerBatch;
  const int kIterationsV = (kIterations >= kVSize) ? (kIterations / kVSize) : 1;

  const int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;

  T sum[kBatchSize]{static_cast<T>(0.0)};
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    int ids = first_batch + i;
    if (ids >= n * d) break;
    int idx_n = ids / d;
    int idx_d = ids % d;
#pragma unroll
    for (int it = 0; it < kIterations; ++it) {
      int idx_dim = it * kThreadPerBatch + threadIdx.x;
      int idx = idx_n * dim * d + idx_dim * d + idx_d;

      if (idx_n < n && idx_dim < dim) {
        VecT softmaxdata;
        if (InLogMode) {
          softmaxdata = reinterpret_cast<VecT*>(&softmaxwrt[idx])[0];
        } else {
          softmaxdata = reinterpret_cast<const VecT*>(&softmax[idx])[0];
        }
        VecT labelsdata = reinterpret_cast<const VecT*>(&labels[idx])[0];
        T* softmaxptr = reinterpret_cast<T*>(&softmaxdata);
        T* labelsptr = reinterpret_cast<T*>(&labelsdata);
#pragma unroll
        for (int s = 0; s < kVSize; s++) {
          if (InLogMode) {
            sum[i] -= softmaxptr[s] * labelsptr[s];
            softmaxptr[s] = Exp(softmaxptr[s]);
          } else {
            sum[i] -= Log(softmaxptr[s]) * labelsptr[s];
          }
        }
        if (InLogMode) {
          reinterpret_cast<VecT*>(&softmaxwrt[idx])[0] = softmaxdata;
        }
      }
    }
  }
569
  phi::WarpReduceSum<T, kBatchSize, kWarpSize>(sum);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
  __syncthreads();

  __shared__ T sumshare[kWarpPerBatch][kBatchPerBlock][kBatchSize];
  if (threadIdx.x % kWarpSize == 0) {
#pragma unroll
    for (int i = 0; i < kBatchSize; i++) {
      sumshare[threadIdx.x / kWarpSize][threadIdx.y][i] = sum[i];
    }
  }
  __syncthreads();

  // write
  if (threadIdx.x == 0) {
    for (int i = 0; i < kBatchSize; i++) {
      int ids = first_batch + i;
      if (ids < n * d) {
        loss[ids] = sumshare[0][threadIdx.y][i];
        for (int s = 1; s < kWarpPerBatch; s++) {
          loss[ids] += sumshare[s][threadIdx.y][i];
        }
      }
    }
  }
}

/*
Core function of softmax with cross entropy forward soft label.
The computation includes
  - Compute maximum of batch: maxvalue_{i} = max_j src_{i,j}
  - Compute sum of exp batch: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  - Compute: sum of - sum_{j}{ label_{i,j} * (src_{i,j} - maxvalue_{i} -
log(sum[i]))}
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
template <typename T, typename VecT, typename AccT, int Log2Elements>
__global__ void WarpSoftmaxForwardSoftLabel(T* loss, T* softmax, const T* src,
                                            const T* label,
                                            const int batch_size,
                                            const int stride,
                                            const int element_count) {
  const bool LogMode = true;

  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kIterations = kDimCeil / kWarpSize;
  constexpr int kIterationsV =
      (kIterations >= kVSize) ? (kIterations / kVSize) : 1;
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;

  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
  int local_batches = batch_size - first_batch;
  if (local_batches > kBatchSize) {
    local_batches = kBatchSize;
  }

  // read data from global memory
  VecT srcdata[kBatchSize][kIterationsV];
  VecT labeldata[kBatchSize][kIterationsV];

  for (int i = 0; i < kBatchSize; ++i) {
    const VecT* src_v =
        reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
    const VecT* label_v =
        reinterpret_cast<const VecT*>(&label[(first_batch + i) * stride]);

    // max index to read
    int idx_max = (i < local_batches) ? element_count : 0;
    int idx_max_v = idx_max / kVSize;

    // read data
    for (int it = 0; it < kIterationsV; ++it) {
      int src_idx = threadIdx.x + it * kWarpSize;
      if (src_idx < idx_max_v) {
        srcdata[i][it] = src_v[src_idx];
        labeldata[i][it] = label_v[src_idx];
      } else {
#pragma unroll
        for (int s = 0; s < kVSize; s++) {
          reinterpret_cast<T*>(&srcdata[i][it])[s] =
              -std::numeric_limits<AccT>::max();
          reinterpret_cast<T*>(&labeldata[i][it])[s] = 0.0;
        }
      }
    }
  }

  // compute max value
  AccT max_value[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    max_value[i] = -std::numeric_limits<AccT>::infinity();
#pragma unroll
    for (int it = 0; it < kIterationsV; ++it) {
      T* srcptr_v = reinterpret_cast<T*>(&srcdata[i][it]);
      T valmax = srcptr_v[0];
#pragma unroll
      for (int s = 1; s < kVSize; ++s) {
        valmax = (valmax > srcptr_v[s]) ? valmax : srcptr_v[s];
      }
      max_value[i] = (max_value[i] > static_cast<AccT>(valmax))
                         ? max_value[i]
                         : static_cast<AccT>(valmax);
    }
  }
677
  phi::WarpReduceMax<AccT, kBatchSize, kWarpSize>(max_value);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

  // compute sum
  AccT sum[kBatchSize]{0.0};
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
#pragma unroll
    for (int it = 0; it < kIterationsV; ++it) {
      T* srcptr_v = reinterpret_cast<T*>(&srcdata[i][it]);
#pragma unroll
      for (int s = 0; s < kVSize; ++s) {
        if (LogMode) {
          sum[i] += std::exp(static_cast<AccT>(srcptr_v[s]) - max_value[i]);
        } else {
          srcptr_v[s] = std::exp(static_cast<AccT>(srcptr_v[s]) - max_value[i]);
          sum[i] += static_cast<AccT>(srcptr_v[s]);
        }
      }
    }
  }
697
  phi::WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

  // log_softmax and loss
  AccT sumloss[kBatchSize]{0.0};
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (i >= local_batches) break;

    VecT* softmax_v =
        reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);

    // max index to write
    int idx_max = (i < local_batches) ? element_count : 0;
    int idx_max_v = idx_max / kVSize;

    if (LogMode) {
      sum[i] = std::log(sum[i]);
    }
#pragma unroll
    for (int it = 0; it < kIterationsV; ++it) {
      T* srcvp = reinterpret_cast<T*>(&srcdata[i][it]);
      T* labelvp = reinterpret_cast<T*>(&labeldata[i][it]);
      VecT tmpv;
      T* tmpvp = reinterpret_cast<T*>(&tmpv);
#pragma unroll
      for (int s = 0; s < kVSize; ++s) {
        if (LogMode) {
          AccT logsoftmax = static_cast<AccT>(srcvp[s]) - max_value[i] - sum[i];
          sumloss[i] -= logsoftmax * static_cast<AccT>(labelvp[s]);
          tmpvp[s] = std::exp(logsoftmax);
        } else {
          tmpvp[s] = static_cast<AccT>(srcvp[s]) / sum[i];
        }
      }

      int idx = threadIdx.x + it * kWarpSize;
      if (idx < idx_max_v) {
        softmax_v[idx] = tmpv;
      }
    }
  }

  // loss
740
  phi::WarpReduceSum<AccT, kBatchSize, kWarpSize>(sumloss);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

  for (int i = 0; i < kBatchSize; i++) {
    if (i >= local_batches) break;
    loss[first_batch + i] = sumloss[i];
  }
}

#define SOFTMAX_WARP_FORWARD_SOFT_CASE(Log2Elements, VecT, AccT)               \
  case Log2Elements:                                                           \
    WarpSoftmaxForwardSoftLabel<T, VecT, AccT,                                 \
                                Log2Elements><<<blocks, threads, 0, stream>>>( \
        loss, softmax, src, label, batch_size, stride, element_count);         \
    break;

/*
  Wrapper of softmax with cross entropy forward soft label.
*/
template <typename T>
void SwitchWarpSoftmaxForwardSoftLabel(const int blocks, const dim3 threads,
                                       gpuStream_t stream, T* loss, T* softmax,
                                       const T* src, const T* label,
                                       const int batch_size, const int stride,
                                       const int element_count,
                                       const int log2_elements) {
  using AccT = typename details::MPTypeTrait<T>::Type;
  switch (log2_elements) {
    SOFTMAX_WARP_FORWARD_SOFT_CASE(0, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(1, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(2, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(3, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(4, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(5, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(6, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(7, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(8, T, AccT);
    SOFTMAX_WARP_FORWARD_SOFT_CASE(9, T, AccT);
    default:
      break;
  }
}

template <typename T>
static void SoftmaxWithCrossEntropySoftLabel(
    const platform::CUDADeviceContext& ctx, const int rank, const int axis,
    const T* logits_data, const T* labels_data, T* softmax_data, T* loss_data,
    int N, int dim, int D) {
#ifdef __HIPCC__
  constexpr int kMaxBlockDim = 256;
#else
  constexpr int kMaxBlockDim = 512;
#endif
  int64_t block_dim = dim >= kMaxBlockDim
                          ? kMaxBlockDim
                          : (1 << static_cast<int>(std::log2(dim)));

  int64_t grid_dim = N * D;
  constexpr int max_dim = 320;

  const int kDimLog2 = static_cast<int>(Log2Ceil(dim));
  const int kDimCeil = 1 << kDimLog2;
  auto stream = ctx.stream();

  if (D == 1 && dim <= max_dim) {
    int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
    int batches_per_warp = (kDimCeil <= 128) ? 2 : 1;

    // use 128 threads per block to maximimize gpu utilization
    constexpr int threads_per_block = 128;
    int warps_per_block = (threads_per_block / kWarpSize);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = (N + batches_per_block - 1) / batches_per_block;
    dim3 threads(kWarpSize, warps_per_block, 1);

    SwitchWarpSoftmaxForwardSoftLabel<T>(blocks, threads, stream, loss_data,
                                         softmax_data, logits_data, labels_data,
                                         N, dim, dim, kDimLog2);

  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
    DataLayout layout = DataLayout::kNCHW;
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t descp = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t descp = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSoftmaxForward_V2(
        handle, platform::CudnnDataType<T>::kOne(), descp, logits_data,
        platform::CudnnDataType<T>::kZero(), descp, softmax_data,
        MIOPEN_SOFTMAX_LOG, mode));
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSoftmaxForward(
        handle, CUDNN_SOFTMAX_LOG, mode, platform::CudnnDataType<T>::kOne(),
        descp, logits_data, platform::CudnnDataType<T>::kZero(), descp,
        softmax_data));
#endif

    const int kDimLog2 = static_cast<int>(Log2Ceil(dim));
    const int kDimCeil = 1 << kDimLog2;
#ifdef __HIPCC__
    int kThreadPerBlock = 256;
#else
    int kThreadPerBlock = 512;
#endif

    int kBatchPerBlock = 1;
    int blocks = (N * D + kBatchPerBlock - 1) / kBatchPerBlock;
    dim3 threads(kThreadPerBlock / kBatchPerBlock, kBatchPerBlock, 1);

    CrossEntropySoftLabel<T, T, true><<<blocks, threads, 0, stream>>>(
        loss_data, softmax_data, NULL, labels_data, N, dim, D, kDimLog2);
  }
}

863 864 865
template <typename T>
__global__ void SoftCrossEntropyGradientKernel(T* logit_grad,
                                               const T* loss_grad,
866 867 868 869
                                               const T* labels, const int64_t n,
                                               const int64_t d,
                                               const int64_t remain) {
  int64_t ids = blockIdx.x * blockDim.x + threadIdx.x;
870
  if (ids < n * d) {
871 872 873
    int64_t idx_n = ids / d;
    int64_t idx_remain = ids % remain;
    int64_t idx_loss = idx_n * remain + idx_remain;
874
    logit_grad[ids] = loss_grad[idx_loss] * (logit_grad[ids] - labels[ids]);
C
caoying03 已提交
875
  }
C
caoying03 已提交
876
}
S
sneaxiy 已提交
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
template <typename T>
__global__ void SoftLabelCrossEntropyGradientKernel(T* logit_grad,
                                                    const T* loss_grad,
                                                    const T* labels,
                                                    const int n, const int d,
                                                    const int remain) {
  int ids = blockIdx.x * blockDim.x + threadIdx.x;
  if (ids < n * d) {
    int idx_n = ids / d;
    int idx_remain = ids % remain;
    int idx_loss = idx_n * remain + idx_remain;
    logit_grad[ids] = loss_grad[idx_loss] * (-labels[ids] / logit_grad[ids]);
  }
}

893
template <typename T, typename LabelT>
894
__global__ void HardLabelCrossEntropyGradientKernel(T* logit_grad,
895
                                                    const LabelT* labels,
896 897 898 899 900 901
                                                    const int n, const int d,
                                                    const int remain,
                                                    const int ignore_index) {
  CUDA_KERNEL_LOOP(index, n * remain) {
    int idx_n = index / remain;
    int idx_remain = index % remain;
902
    int tmp = static_cast<int>(labels[index]);
903 904 905 906 907 908 909
    int idx = idx_n * d + tmp * remain + idx_remain;
    if (ignore_index != tmp) {
      logit_grad[idx] = -static_cast<T>(1.) / logit_grad[idx];
    }
  }
}

910
template <typename T, typename LabelT>
911 912 913
__global__ void ScaleCrossEntropyGradient(T* logit_grad, const T* loss_grad,
                                          const int num, const int d,
                                          const int remain,
914
                                          const LabelT* labels,
915 916 917 918 919 920
                                          const int ignore_index) {
  CUDA_KERNEL_LOOP(index, num) {
    int idx_n = index / d;
    int idx_remain = index % remain;
    int idx_lbl = idx_n * remain + idx_remain;
    int k = (index % d) / remain;
921 922
    auto lbl = static_cast<int64_t>(labels[idx_lbl]);
    if (lbl == ignore_index || lbl != k) {
923 924 925 926 927 928 929
      logit_grad[index] = static_cast<T>(0.);
    } else {
      logit_grad[index] *= loss_grad[idx_lbl];
    }
  }
}

C
caoying03 已提交
930
template <typename T>
Y
Yu Yang 已提交
931
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
932 933
 public:
  void Compute(const framework::ExecutionContext& context) const override {
934 935 936 937 938 939
    RunSoftmaxWithCrossEntropyFunctor<T>(context, *this);
  }

  template <typename LabelT>
  static void Apply(const framework::ExecutionContext& context,
                    const framework::Tensor& labels, const bool soft_label) {
940 941 942 943
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(context.GetPlace()), true,
        platform::errors::Unavailable("softmax_with_cross_entropy operator's "
                                      "CUDA kernel only runs on GPU device."));
944
    const bool use_softmax = context.Attr<bool>("use_softmax");
945 946

    // do not with softmax op, and input is softmax
947
    if (!use_softmax) {
948 949 950 951 952
      const Tensor* softmax = context.Input<Tensor>("Logits");
      Tensor* softmax_out = context.Output<Tensor>("Softmax");
      Tensor* loss = context.Output<Tensor>("Loss");

      const int rank = softmax->dims().size();
953 954
      const int axis =
          phi::funcs::CanonicalAxis(context.Attr<int>("axis"), rank);
955
      const int axis_dim = softmax->dims()[axis];
956

957 958
      const int n = phi::funcs::SizeToAxis(axis, softmax->dims());
      const int d = phi::funcs::SizeFromAxis(axis, softmax->dims());
959

960 961 962
      auto* softmax_out_data =
          softmax_out->template mutable_data<T>(context.GetPlace());
      auto* loss_data = loss->template mutable_data<T>(context.GetPlace());
963

964
      phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_constant;
965
      set_constant(context.cuda_device_context(), loss, static_cast<T>(0));
966 967 968 969 970 971 972 973 974 975
      if (axis_dim == 1) {
        set_constant(context.cuda_device_context(), softmax_out,
                     static_cast<T>(1));
        return;
      }

      auto ignore_index = context.Attr<int>("ignore_index");

      Tensor softmax_2d, labels_2d, loss_2d, softmax_out_2d;
      softmax_2d.ShareDataWith(*softmax).Resize({n, d});
976
      labels_2d.ShareDataWith(labels).Resize({n, labels.numel() / n});
977 978 979 980 981 982 983 984 985 986 987 988 989
      loss_2d.ShareDataWith(*loss).Resize({n, 1});
      softmax_out_2d.ShareDataWith(*softmax_out).Resize({n, d});

      // math::CrossEntropyFunctor support axis is the last
      if (axis == -1) {
        math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
            context.cuda_device_context(), &loss_2d, &softmax_2d, &labels_2d,
            soft_label, ignore_index, axis_dim);
        return;
      }

      // if axis is not the last, we need a new impliment
      if (soft_label) {
990 991
        auto* logits_data = softmax->template data<T>();
        auto* labels_data = labels.template data<T>();
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

        const int kDimLog2 = static_cast<int>(Log2Ceil(axis_dim));
        const int kDimCeil = 1 << kDimLog2;
#ifdef __HIPCC__
        int kThreadPerBlock = 256;
#else
        int kThreadPerBlock = 512;
#endif
        int kBatchPerBlock = 1;
        int blocks = (n * d + kBatchPerBlock - 1) / kBatchPerBlock;
        dim3 threads(kThreadPerBlock / kBatchPerBlock, kBatchPerBlock, 1);

        CrossEntropySoftLabel<T, T, false><<<
            blocks, threads, 0, context.cuda_device_context().stream()>>>(
            loss_data, NULL, logits_data, labels_data, n, axis_dim,
            d / axis_dim, kDimLog2);
1008
      } else {  // HardLabel
1009 1010
        auto* logits_data = softmax->template data<T>();
        auto* labels_data = labels.template data<LabelT>();
1011 1012 1013
        int threads = 128;
        int blocks = (n * d / axis_dim + threads - 1) / threads;
        if (ignore_index >= 0 && ignore_index < axis_dim) {
1014
          CrossEntropyHardLabel<T, LabelT, true><<<
1015 1016 1017 1018
              blocks, threads, 0, context.cuda_device_context().stream()>>>(
              loss_data, logits_data, labels_data, n, axis_dim, d / axis_dim,
              ignore_index);
        } else {
1019
          CrossEntropyHardLabel<T, LabelT, false><<<
1020 1021 1022 1023
              blocks, threads, 0, context.cuda_device_context().stream()>>>(
              loss_data, logits_data, labels_data, n, axis_dim, d / axis_dim,
              ignore_index);
        }
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
      }

      // cause of input is softmax
      // copy to output softmax, directly
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), softmax_out);

      return;
    }

C
caoying03 已提交
1034 1035
    const Tensor* logits = context.Input<Tensor>("Logits");
    Tensor* softmax = context.Output<Tensor>("Softmax");
1036
    Tensor* loss = context.Output<Tensor>("Loss");
1037 1038

    const int rank = logits->dims().size();
1039
    const int axis = phi::funcs::CanonicalAxis(context.Attr<int>("axis"), rank);
1040 1041
    int axis_dim = logits->dims()[axis];

1042 1043
    const int64_t n = phi::funcs::SizeToAxis(axis, logits->dims());
    const int64_t d = phi::funcs::SizeFromAxis(axis, logits->dims());
1044

1045 1046
    auto* softmax_data = softmax->template mutable_data<T>(context.GetPlace());
    auto* loss_data = loss->template mutable_data<T>(context.GetPlace());
1047

1048
    if (axis_dim == 1) {
1049
      phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_constant;
1050 1051 1052 1053 1054
      set_constant(context.cuda_device_context(), softmax, static_cast<T>(1));
      set_constant(context.cuda_device_context(), loss, static_cast<T>(0));
      return;
    }

1055
    auto ignore_index = context.Attr<int>("ignore_index");
1056

S
sneaxiy 已提交
1057
    if (soft_label) {
1058 1059
      auto* logits_data = logits->template data<T>();
      auto* labels_data = labels.template data<T>();
1060 1061 1062
      SoftmaxWithCrossEntropySoftLabel<T>(
          context.cuda_device_context(), rank, axis, logits_data, labels_data,
          softmax_data, loss_data, n, axis_dim, d / axis_dim);
S
sneaxiy 已提交
1063
    } else {
S
sneaxiy 已提交
1064
      if (!context.Attr<bool>("numeric_stable_mode")) {
1065 1066 1067 1068
        // CUDNN kernel only suppoer 2-D tensor and perfome softmax on last dim
        Tensor logits_2d, softmax_2d, labels_2d, loss_2d;
        logits_2d.ShareDataWith(*logits).Resize({n, d});
        softmax_2d.ShareDataWith(*softmax).Resize({n, d});
1069
        labels_2d.ShareDataWith(labels).Resize({n, labels.numel() / n});
1070
        loss_2d.ShareDataWith(*loss).Resize({n, 1});
1071 1072
        math::SoftmaxCUDNNFunctor<T>()(context.cuda_device_context(),
                                       &logits_2d, &softmax_2d);
S
sneaxiy 已提交
1073
        math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
1074
            context.cuda_device_context(), &loss_2d, &softmax_2d, &labels_2d,
1075
            false, ignore_index, axis_dim);
S
sneaxiy 已提交
1076
      } else {
1077 1078
        auto* logits_data = logits->template data<T>();
        auto* labels_data = labels.template data<LabelT>();
1079
        if (ignore_index >= 0 && ignore_index < axis_dim) {
1080
          SoftmaxWithCrossEntropyHardLabel<T, LabelT, true>(
1081 1082 1083 1084
              context.cuda_device_context(), rank, axis, logits_data,
              labels_data, loss_data, softmax_data, n, axis_dim, d / axis_dim,
              ignore_index);
        } else {
1085
          SoftmaxWithCrossEntropyHardLabel<T, LabelT, false>(
1086 1087 1088 1089
              context.cuda_device_context(), rank, axis, logits_data,
              labels_data, loss_data, softmax_data, n, axis_dim, d / axis_dim,
              ignore_index);
        }
S
sneaxiy 已提交
1090
      }
S
sneaxiy 已提交
1091
    }
C
caoying03 已提交
1092 1093 1094 1095
  }
};

template <typename T>
Y
Yu Yang 已提交
1096
class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
1097 1098
 public:
  void Compute(const framework::ExecutionContext& context) const override {
1099 1100 1101 1102 1103 1104
    RunSoftmaxWithCrossEntropyFunctor<T>(context, *this);
  }

  template <typename LabelT>
  static void Apply(const framework::ExecutionContext& context,
                    const framework::Tensor& labels, const bool soft_label) {
1105 1106 1107 1108
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(context.GetPlace()), true,
        platform::errors::Unavailable("softmax_with_cross_entropy operator's "
                                      "CUDA kernel only runs on GPU device."));
1109
    const T* loss_grad_data =
1110 1111
        context.Input<Tensor>(framework::GradVarName("Loss"))
            ->template data<T>();
C
caoying03 已提交
1112 1113
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
Z
Zeng Jinle 已提交
1114 1115 1116 1117 1118
    const Tensor* softmax = context.Input<Tensor>("Softmax");
    if (logit_grad != softmax) {
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), logit_grad);
    }
1119
    T* logit_grad_data = logit_grad->template data<T>();
C
caoying03 已提交
1120

1121
    const int rank = logit_grad->dims().size();
1122
    const int axis = phi::funcs::CanonicalAxis(context.Attr<int>("axis"), rank);
1123 1124
    int axis_dim = logit_grad->dims()[axis];

1125 1126
    const int64_t n = phi::funcs::SizeToAxis(axis, logit_grad->dims());
    const int64_t d = phi::funcs::SizeFromAxis(axis, logit_grad->dims());
1127
    const int64_t remain = d / axis_dim;
1128

1129 1130 1131
#ifdef __HIPCC__
    int block = 256;
#else
1132
    int block = 512;
1133
#endif
1134
    auto stream = context.cuda_device_context().stream();
1135
    auto ignore_index = context.Attr<int>("ignore_index");
1136
    auto use_softmax = context.Attr<bool>("use_softmax");
1137 1138

    // do not with softmax op, and input is softmax
1139
    if (!use_softmax) {
1140
      if (soft_label) {
1141
        int grid = (n * d + block - 1) / block;
1142
        const T* label_data = labels.template data<T>();
1143 1144 1145 1146 1147 1148
        SoftLabelCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
            logit_grad_data, loss_grad_data, label_data, n, d, remain);
      } else {
        Tensor logits_grad_2d;
        logits_grad_2d.ShareDataWith(*logit_grad).Resize({n, d});
        int grid = (n * remain + block - 1) / block;
1149 1150 1151
        const auto* label_data = labels.template data<LabelT>();
        HardLabelCrossEntropyGradientKernel<T,
                                            LabelT><<<grid, block, 0, stream>>>(
1152 1153 1154
            logit_grad_data, label_data, n, d, remain, ignore_index);
        int num = n * d;
        grid = (num + block - 1) / block;
1155
        ScaleCrossEntropyGradient<T, LabelT><<<grid, block, 0, stream>>>(
1156 1157 1158 1159 1160 1161 1162 1163 1164
            logit_grad_data, loss_grad_data, num, d, remain, label_data,
            ignore_index);
      }

      return;
    }

    // with softmax, continue

1165
    if (soft_label) {
1166
      int64_t grid = (n * d + block - 1) / block;
1167
      const T* label_data = labels.template data<T>();
1168
      SoftCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
1169
          logit_grad_data, loss_grad_data, label_data, n, d, remain);
1170
    } else {
1171
      const auto* label_data = labels.template data<LabelT>();
1172 1173 1174 1175
      int grid = (n * d + block - 1) / block;
      SoftmaxWithCrossEntropyGradHardLabel<T><<<grid, block, 0, stream>>>(
          logit_grad_data, loss_grad_data, label_data, n, d / remain, remain,
          ignore_index);
1176
    }
C
caoying03 已提交
1177 1178 1179 1180 1181 1182 1183
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyCUDAKernel<paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy_grad,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<paddle::platform::float16>);
#else
1194 1195 1196 1197 1198 1199 1200 1201 1202
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyCUDAKernel<paddle::platform::float16>,
    ops::SoftmaxWithCrossEntropyCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy_grad,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<paddle::platform::float16>,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<double>);
1203
#endif