ipu_executor.cc 11.8 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "paddle/fluid/platform/device/ipu/ipu_executor.h"

using float16 = paddle::platform::float16;
J
jianghaicheng 已提交
18 19 20 21 22

namespace paddle {
namespace platform {
namespace ipu {

23 24 25 26 27 28 29 30
Executor::~Executor() {
  Detach();
  session_.reset();
  executor_resources_.reset();
}

void Executor::Prepare(const std::string &proto) {
  VLOG(10) << "enter Executor::Prepare";
J
jianghaicheng 已提交
31

32 33
  AcquireDevice();
  executor_resources_ = std::make_unique<ExecutorResources>();
J
jianghaicheng 已提交
34 35 36

  auto art = popart::AnchorReturnType("All");
  std::map<popart::TensorId, popart::AnchorReturnType> anchor_ids;
37
  for (const auto &id : compiler_resources_->outputs) {
J
jianghaicheng 已提交
38 39 40 41
    anchor_ids.emplace(id, art);
  }
  auto dataFlow = popart::DataFlow(ipu_strategy_->batches_per_step, anchor_ids);

42
  if (ipu_strategy_->is_training) {
J
jianghaicheng 已提交
43
    VLOG(10) << "Creating TrainingSession from Onnx Model...";
44
    auto optimizer = compiler_resources_->NewOptimizer();
J
jianghaicheng 已提交
45
    session_ = popart::TrainingSession::createFromOnnxModel(
46 47 48
        proto, dataFlow, compiler_resources_->loss_var, *optimizer, device_,
        popart::InputShapeInfo(), ipu_strategy_->popart_options,
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
49 50 51
  } else {
    VLOG(10) << "Creating InferenceSession from Onnx Model...";
    session_ = popart::InferenceSession::createFromOnnxModel(
52 53
        proto, dataFlow, device_, popart::InputShapeInfo(),
        ipu_strategy_->popart_options, ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  }
  VLOG(10) << "Creating session from Onnx Model...done";

  VLOG(10) << "Preparing session device...";
  session_->prepareDevice();
  VLOG(10) << "Preparing session device...done";

  SetWeightsIO();

  VLOG(10) << "Copy weights from paddle to popart...";
  WeightsFromPaddle();
  VLOG(10) << "Copy weights from paddle to popart...done";

  VLOG(10) << "Copy weights from host to device...";
  session_->weightsFromHost();
  VLOG(10) << "Copy weights from host to device...done";

  if (ipu_strategy_->save_init_onnx) {
    session_->modelToHost("test_init.onnx");
  }
74 75
  // init run step
  step_ = 0;
J
jianghaicheng 已提交
76 77
}

78 79
void Executor::Run(const std::vector<const Tensor *> &inputs,
                   const std::vector<Tensor *> &outputs,
J
jianghaicheng 已提交
80
                   const framework::ExecutionContext &ctx) {
81
  VLOG(10) << "enter Executor::Run";
J
jianghaicheng 已提交
82 83 84 85
  // inputs
  std::map<popart::TensorId, popart::IArray &> popart_inputs;
  std::map<popart::TensorId, PaddleIArray> input_wrappers;
  for (size_t i = 0; i < inputs.size(); i++) {
86 87
    auto tensor_id = compiler_resources_->inputs[i];
    input_wrappers.emplace(tensor_id, PaddleIArray(inputs[i]));
J
jianghaicheng 已提交
88 89 90 91 92 93
    popart_inputs.emplace(tensor_id, input_wrappers.at(tensor_id));
  }
  // anchors
  std::map<popart::TensorId, popart::IArray &> popart_anchors;
  std::map<popart::TensorId, PaddleIArray> anchor_wrappers;
  for (size_t i = 0; i < outputs.size(); i++) {
94
    auto tensor_id = compiler_resources_->outputs[i];
J
jianghaicheng 已提交
95 96 97 98 99 100 101
    // get dims & dtype from session
    auto fetch_info = session_->getInfo(tensor_id);
    auto output_shape = fetch_info.shape();
    if (ipu_strategy_->batches_per_step > 1) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->batches_per_step);
    }
102 103 104 105 106 107 108 109 110 111
    if (ipu_strategy_->popart_options.enableGradientAccumulation) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.accumulationFactor);
    }
    if (ipu_strategy_->popart_options.enableReplicatedGraphs) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.replicatedGraphCount);
    }

    auto *tensor = outputs[i];
112
    tensor->Resize(pten::make_ddim(output_shape));
J
jianghaicheng 已提交
113 114
    auto fetch_dtype = fetch_info.dataType();
    auto paddle_type = PopartType2VarType(fetch_dtype);
115 116
    tensor->mutable_data(ctx.GetPlace(),
                         framework::TransToPtenDataType(paddle_type));
J
jianghaicheng 已提交
117 118 119
    anchor_wrappers.emplace(tensor_id, PaddleIArray(tensor));
    popart_anchors.emplace(tensor_id, anchor_wrappers.at(tensor_id));
  }
120 121 122 123 124 125 126 127 128 129
  VLOG(10) << "Prepared inputs/anchors";

  if (ipu_strategy_->is_training && compiler_resources_->with_lr_sched) {
    VLOG(10) << "Update learning_rate";
    auto new_lr =
        GetSingleVarFromScope<float>(scope_, compiler_resources_->lr_var);
    VLOG(10) << "New Lr: " << new_lr;
    auto *optimizer = compiler_resources_->UpdateOptimizer(new_lr);
    auto *session = dynamic_cast<popart::TrainingSession *>(session_.get());
    session->updateOptimizerFromHost(optimizer);
J
jianghaicheng 已提交
130 131 132 133 134 135 136
  }

  popart::StepIO stepio(popart_inputs, popart_anchors);
  VLOG(10) << "Running...";
  session_->run(stepio);
  VLOG(10) << "Running...done";

137 138 139
  step_++;
  if (ipu_strategy_->is_training &&
      step_ % ipu_strategy_->save_per_n_step == 0) {
J
jianghaicheng 已提交
140 141
    session_->weightsToHost();
    WeightsToPaddle();
142 143
    if (ipu_strategy_->save_onnx_checkpoint) {
      session_->modelToHost("test_last" + std::to_string(step_) + ".onnx");
J
jianghaicheng 已提交
144 145 146 147
    }
  }
}

148 149 150 151 152 153
void Executor::AcquireDevice() {
  VLOG(10) << "enter Executor::AcquireDevice";
  if (device_) {
    Detach();
    device_.reset();
  }
J
jianghaicheng 已提交
154

155 156
  bool use_ipu_model = GetBoolEnv("POPLAR_IPUMODEL");
  if (use_ipu_model) {
A
Allen Guo 已提交
157 158 159 160 161 162
    std::map<std::string, std::string> deviceOpts{
        {
            "numIPUs", std::to_string(ipu_strategy_->num_ipus),
        },
        {"ipuVersion", "ipu2"},
    };
163 164 165 166 167 168 169 170 171 172 173
    device_ = popart::DeviceManager::createDeviceManager().createIpuModelDevice(
        deviceOpts);
  } else {
    device_ =
        popart::DeviceManager::createDeviceManager().acquireAvailableDevice(
            RequestIpus(ipu_strategy_->num_ipus));
    PADDLE_ENFORCE_NOT_NULL(device_, platform::errors::Unavailable(
                                         "Can't attach IPU, ipu_num = %d.",
                                         RequestIpus(ipu_strategy_->num_ipus)));
  }
  VLOG(10) << "leave Executor::AcquireDevice";
J
jianghaicheng 已提交
174 175
}

176 177 178 179 180 181
void Executor::Detach() {
  if (device_ && device_->isAttached()) {
    VLOG(10) << "trying to detach IPU";
    device_->detach();
    VLOG(10) << " detached IPU";
  }
J
jianghaicheng 已提交
182 183 184
}

void Executor::SetWeightsIO() {
185 186
  auto opt_type = compiler_resources_->optimizer_type;
  VLOG(10) << "SetWeightsIO for " << opt_type;
J
jianghaicheng 已提交
187
  auto pre_post_fix = GetOptPrePostfix(opt_type);
188
  for (const auto &weight_id : compiler_resources_->weights) {
J
jianghaicheng 已提交
189 190 191 192 193 194 195 196 197
    for (const auto &pair : pre_post_fix) {
      // pair.first : popart prefix, pair.second : paddle postfix
      auto popart_var_name = pair.first + weight_id;
      auto paddle_var_name = weight_id + pair.second;

      if (scope_->FindVar(paddle_var_name) == nullptr) {
        continue;
      }

198 199 200 201
      if (!session_->hasInfo(popart_var_name)) {
        continue;
      }

J
jianghaicheng 已提交
202
      auto var = scope_->GetVar(paddle_var_name);
203
      auto data_ptr = var->GetMutable<framework::LoDTensor>()->data();
J
jianghaicheng 已提交
204 205

      auto tensor_info = session_->getInfo(popart_var_name);
206 207 208 209
      executor_resources_->weights_io.insert(popart_var_name,
                                             {data_ptr, tensor_info});
      executor_resources_->weights_and_opt_state.emplace_back(
          std::make_pair(popart_var_name, paddle_var_name));
J
jianghaicheng 已提交
210 211 212 213
    }
  }
}

214 215 216 217
// align_to_popart: align dtype to popart if true, else to paddle
void Executor::ConvertWeights(bool align_to_popart) {
  for (auto weight_pair : executor_resources_->weights_and_opt_state) {
    auto paddle_var = scope_->GetVar(weight_pair.second);
A
Allen Guo 已提交
218 219
    auto paddle_var_dtype = PdDataType2PopartType(
        paddle_var->GetMutable<framework::LoDTensor>()->dtype());
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

    PADDLE_ENFORCE_EQ((paddle_var_dtype == popart::DataType::FLOAT ||
                       paddle_var_dtype == popart::DataType::FLOAT16),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "Paddle, but received type is %s.",
                          paddle_var_dtype));

    popart::TensorInfo info = session_->getInfo(weight_pair.first);
    auto popart_var_dtype = info.dataType();
    PADDLE_ENFORCE_EQ((popart_var_dtype == popart::DataType::FLOAT ||
                       popart_var_dtype == popart::DataType::FLOAT16),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "popart, but received type is %s.",
                          popart_var_dtype));

    if (paddle_var_dtype == popart_var_dtype) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have the same dtype : " << popart_var_dtype;
      continue;
    } else if (paddle_var_dtype == popart::DataType::FLOAT) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have different dtype : " << popart_var_dtype;
      auto *data_ptr =
          paddle_var->GetMutable<framework::LoDTensor>()->data<float>();

      auto num_elem = info.nelms();
      if (align_to_popart) {
        std::vector<uint16_t> fp16_data;
        std::transform(data_ptr, data_ptr + num_elem,
                       std::back_inserter(fp16_data),
                       [&](float elem) { return popart::floatToHalf(elem); });
        memcpy(reinterpret_cast<void *>(data_ptr), fp16_data.data(),
               num_elem * sizeof(float16));
      } else {
        std::vector<float> fp32_data;
        auto fp16_data_ptr = reinterpret_cast<uint16_t *>(data_ptr);
        std::transform(fp16_data_ptr, fp16_data_ptr + num_elem,
                       std::back_inserter(fp32_data), [&](uint16_t elem) {
                         return popart::halfToFloat(elem);
                       });
        memcpy(reinterpret_cast<void *>(data_ptr), fp32_data.data(),
               num_elem * sizeof(float));
      }
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Convert Paddle FLOAT16 to popart FLOAT"));
    }
  }
J
jianghaicheng 已提交
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Paddle -> Popart        |
// |  FLOAT  | FLOAT16 | floatToHalf -> Paddle -> Popart |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Paddle -> Popart        |
// |-----------------------------------------------------|
// floatToHalf -> Paddle: cast then save to paddle
// Paddle -> Popart: copy from paddle to popart
void Executor::WeightsFromPaddle() {
  ConvertWeights(true);
  session_->writeWeights(executor_resources_->weights_io);
}
J
jianghaicheng 已提交
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Popart -> Paddle        |
// |  FLOAT  | FLOAT16 | Popart -> Paddle -> halfToFloat |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Popart -> Paddle        |
// |-----------------------------------------------------|
// Paddle -> halfToFloat: cast then save to paddle
// Popart -> Paddle: copy from paddle to popart
void Executor::WeightsToPaddle() {
  session_->readWeights(executor_resources_->weights_io);
  ConvertWeights(false);
}
J
jianghaicheng 已提交
303

304 305 306 307 308 309 310 311
void Executor::SaveModelToHost(const std::string &path) {
  if (session_) {
    session_->weightsToHost();
    WeightsToPaddle();
    session_->modelToHost(path);
  } else {
    LOG(WARNING) << "Model is empty";
  }
J
jianghaicheng 已提交
312 313 314 315 316
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle