deformable_conv_op.cu 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
B
Bai Yifan 已提交
14 15 16 17 18 19 20 21 22
//
// Part of the following code in this file refs to
// https://github.com/msracver/Deformable-ConvNets/blob/master/DCNv2_op/nn/modulated_deformable_im2col.cuh
//
// Copyright (c) 2018 Microsoft
// Licensed under The MIT License [see LICENSE for details]
// \file modulated_deformable_im2col.cuh
// \brief
// \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu
23 24 25 26

#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
27
#include "paddle/fluid/operators/deformable_conv_op.h"
28
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
29
#include "paddle/pten/kernels/funcs/blas/blas.h"
30
#include "paddle/pten/kernels/funcs/math_function.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaximumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaximumNumBlocks);
}

template <typename T>
__device__ T DmcnGetGradientWeight(T argmax_h, T argmax_w, const int h,
                                   const int w, const int height,
                                   const int width) {
  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
      argmax_w >= width) {
    return 0;
  }

  int argmax_h_low = floor(argmax_h);
  int argmax_w_low = floor(argmax_w);
  int argmax_h_high = argmax_h_low + 1;
  int argmax_w_high = argmax_w_low + 1;

  T weight = 0;
  if (h == argmax_h_low && w == argmax_w_low)
    weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
  if (h == argmax_h_low && w == argmax_w_high)
    weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
  if (h == argmax_h_high && w == argmax_w_low)
    weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
  if (h == argmax_h_high && w == argmax_w_high)
    weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
  return weight;
}

template <typename T>
__global__ void ModulatedDeformableCol2imGpuKernel(
    const int nthreads, const T* data_col, const T* data_offset,
    const T* data_mask, const int channels, const int height, const int width,
    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    const int stride_h, const int stride_w, const int dilation_h,
    const int dilation_w, const int channel_per_deformable_group,
    const int batch_size, const int deformable_group, const int height_col,
    const int width_col, T* grad_im) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t thread = index; thread < nthreads; thread += offset) {
    const int j = (thread / width_col / height_col / batch_size) % kernel_w;
    const int i =
        (thread / width_col / height_col / batch_size / kernel_w) % kernel_h;
    const int c =
        thread / width_col / height_col / batch_size / kernel_w / kernel_h;

    const int deformable_group_index = c / channel_per_deformable_group;

    int w_out = thread % width_col;
    int h_out = (thread / width_col) % height_col;
    int b = (thread / width_col / height_col) % batch_size;
    int w_in = w_out * stride_w - pad_w;
    int h_in = h_out * stride_h - pad_h;

    const T* data_offset_ptr = data_offset +
                               (b * deformable_group + deformable_group_index) *
                                   2 * kernel_h * kernel_w * height_col *
                                   width_col;
    const T* data_mask_ptr = data_mask +
                             (b * deformable_group + deformable_group_index) *
                                 kernel_h * kernel_w * height_col * width_col;
    const int data_offset_h_ptr =
        ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    const int data_offset_w_ptr =
        ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    const int data_mask_hw_ptr =
        ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
    const T offset_h = data_offset_ptr[data_offset_h_ptr];
    const T offset_w = data_offset_ptr[data_offset_w_ptr];
    const T mask = data_mask_ptr[data_mask_hw_ptr];
    const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
    const T cur_inv_w_data = w_in + j * dilation_w + offset_w;

    const T cur_top_grad = data_col[thread] * mask;
    const int cur_h = static_cast<int>(cur_inv_h_data);
    const int cur_w = static_cast<int>(cur_inv_w_data);
    for (int dy = -2; dy <= 2; dy++) {
      for (int dx = -2; dx <= 2; dx++) {
        if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
            cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
            abs(cur_inv_w_data - (cur_w + dx)) < 1) {
          int cur_bottom_grad_pos =
              ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
          T weight =
              DmcnGetGradientWeight(cur_inv_h_data, cur_inv_w_data, cur_h + dy,
                                    cur_w + dx, height, width);

129 130
          platform::CudaAtomicAdd(grad_im + cur_bottom_grad_pos,
                                  weight * cur_top_grad);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        }
      }
    }
  }
}

template <typename T>
inline void ModulatedDeformableCol2im(
    const platform::DeviceContext& ctx, const T* data_col, const T* data_offset,
    const T* data_mask, const std::vector<int64_t> im_shape,
    const std::vector<int64_t> col_shape,
    const std::vector<int64_t> kernel_shape, const std::vector<int> pad,
    const std::vector<int> stride, const std::vector<int> dilation,
    const int deformable_group, T* grad_im) {
  int channel_per_deformable_group = im_shape[0] / deformable_group;
  int num_kernels = col_shape[0] * col_shape[1] * col_shape[2] * col_shape[3];
  int blocks = NumBlocks(num_kernels);
  int threads = kNumCUDAThreads;

  ModulatedDeformableCol2imGpuKernel<T><<<
      blocks, threads, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      num_kernels, data_col, data_offset, data_mask, im_shape[0], im_shape[1],
      im_shape[2], kernel_shape[2], kernel_shape[3], pad[0], pad[1], stride[0],
      stride[1], dilation[0], dilation[1], channel_per_deformable_group,
      col_shape[1], deformable_group, col_shape[2], col_shape[3], grad_im);
}

template <typename T>
__device__ T DmcnGetCoordinateWeight(T argmax_h, T argmax_w, const int height,
                                     const int width, const T* im_data,
                                     const int data_width, const int bp_dir) {
  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
      argmax_w >= width) {
    return 0;
  }

  int argmax_h_low = floor(argmax_h);
  int argmax_w_low = floor(argmax_w);
  int argmax_h_high = argmax_h_low + 1;
  int argmax_w_high = argmax_w_low + 1;

  T weight = 0;

  if (bp_dir == 0) {
    if (argmax_h_low >= 0 && argmax_w_low >= 0)
      weight += -1 * (argmax_w_low + 1 - argmax_w) *
                im_data[argmax_h_low * data_width + argmax_w_low];
    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
      weight += -1 * (argmax_w - argmax_w_low) *
                im_data[argmax_h_low * data_width + argmax_w_high];
    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
      weight += (argmax_w_low + 1 - argmax_w) *
                im_data[argmax_h_high * data_width + argmax_w_low];
    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
      weight += (argmax_w - argmax_w_low) *
                im_data[argmax_h_high * data_width + argmax_w_high];
  } else if (bp_dir == 1) {
    if (argmax_h_low >= 0 && argmax_w_low >= 0)
      weight += -1 * (argmax_h_low + 1 - argmax_h) *
                im_data[argmax_h_low * data_width + argmax_w_low];
    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
      weight += (argmax_h_low + 1 - argmax_h) *
                im_data[argmax_h_low * data_width + argmax_w_high];
    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
      weight += -1 * (argmax_h - argmax_h_low) *
                im_data[argmax_h_high * data_width + argmax_w_low];
    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
      weight += (argmax_h - argmax_h_low) *
                im_data[argmax_h_high * data_width + argmax_w_high];
  }
  return weight;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
template <typename T>
__device__ T DmcnIm2colBilinear(const T* bottom_data, const int data_width,
                                const int height, const int width, T h, T w) {
  int h_low = floor(h);
  int w_low = floor(w);
  int h_high = h_low + 1;
  int w_high = w_low + 1;

  T lh = h - h_low;
  T lw = w - w_low;
  T hh = 1 - lh, hw = 1 - lw;

  T v1 = 0;
  if (h_low >= 0 && w_low >= 0) v1 = bottom_data[h_low * data_width + w_low];
  T v2 = 0;
  if (h_low >= 0 && w_high <= width - 1)
    v2 = bottom_data[h_low * data_width + w_high];
  T v3 = 0;
  if (h_high <= height - 1 && w_low >= 0)
    v3 = bottom_data[h_high * data_width + w_low];
  T v4 = 0;
  if (h_high <= height - 1 && w_high <= width - 1)
    v4 = bottom_data[h_high * data_width + w_high];

  T w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
template <typename T>
__global__ void ModulatedDeformableCol2imCoordGpuKernel(
    const int nthreads, const T* data_col, const T* data_im,
    const T* data_offset, const T* data_mask, const int channels,
    const int height, const int width, const int kernel_h, const int kernel_w,
    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    const int dilation_h, const int dilation_w,
    const int channel_per_deformable_group, const int batch_size,
    const int offset_channels, const int deformable_group, const int height_col,
    const int width_col, T* grad_offset, T* grad_mask) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    T val = 0, mval = 0;
    const int w = i % width_col;
    const int h = (i / width_col) % height_col;
    const int c = (i / width_col / height_col) % offset_channels;
    const int b = (i / width_col / height_col) / offset_channels;

    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    const int col_step = kernel_h * kernel_w;
    int cnt = 0;
    const T* data_col_ptr = data_col +
                            deformable_group_index *
                                channel_per_deformable_group * batch_size *
                                width_col * height_col;
    const T* data_im_ptr = data_im +
                           (b * deformable_group + deformable_group_index) *
                               channel_per_deformable_group / kernel_h /
                               kernel_w * height * width;
    const T* data_offset_ptr = data_offset +
                               (b * deformable_group + deformable_group_index) *
                                   2 * kernel_h * kernel_w * height_col *
                                   width_col;
    const T* data_mask_ptr = data_mask +
                             (b * deformable_group + deformable_group_index) *
                                 kernel_h * kernel_w * height_col * width_col;

    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;

    for (int col_c = offset_c / 2; col_c < channel_per_deformable_group;
         col_c += col_step) {
      const int col_pos =
          (((col_c * batch_size + b) * height_col) + h) * width_col + w;
      const int bp_dir = offset_c % 2;

      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
      int i =
          (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
      int w_out = col_pos % width_col;
      int h_out = (col_pos / width_col) % height_col;
      int w_in = w_out * stride_w - pad_w;
      int h_in = h_out * stride_h - pad_h;
      const int data_offset_h_ptr =
          (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
      const int data_offset_w_ptr =
          (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
           w_out);
      const int data_mask_hw_ptr =
          (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
      const T offset_h = data_offset_ptr[data_offset_h_ptr];
      const T offset_w = data_offset_ptr[data_offset_w_ptr];
      const T mask = data_mask_ptr[data_mask_hw_ptr];
      T inv_h = h_in + i * dilation_h + offset_h;
      T inv_w = w_in + j * dilation_w + offset_w;
      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) {
        inv_h = inv_w = -2;
      } else {
        mval += data_col_ptr[col_pos] *
                DmcnIm2colBilinear(data_im_ptr + cnt * height * width, width,
                                   height, width, inv_h, inv_w);
      }
      const T weight = DmcnGetCoordinateWeight(
          inv_h, inv_w, height, width, data_im_ptr + cnt * height * width,
          width, bp_dir);
      val += weight * data_col_ptr[col_pos] * mask;
      cnt += 1;
    }
    grad_offset[i] = val;
    if (offset_c % 2 == 0)
      grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h *
                      kernel_w +
                  offset_c / 2) *
                     height_col +
                 h) *
                    width_col +
                w] = mval;
  }
}

template <typename T>
inline void ModulatedDeformableCol2imCoord(
    const platform::DeviceContext& ctx, const T* data_col, const T* data_im,
    const T* data_offset, const T* data_mask,
    const std::vector<int64_t> im_shape, const std::vector<int64_t> col_shape,
    const std::vector<int64_t> kernel_shape, const std::vector<int> paddings,
    const std::vector<int> strides, const std::vector<int> dilations,
    const int deformable_groups, T* grad_offset, T* grad_mask) {
  int num_kernels = 2 * kernel_shape[2] * kernel_shape[3] * col_shape[1] *
                    col_shape[2] * col_shape[3] * deformable_groups;
  int channel_per_deformable_group = col_shape[0] / deformable_groups;
  int blocks = NumBlocks(num_kernels);
  int threads = kNumCUDAThreads;

  ModulatedDeformableCol2imCoordGpuKernel<T><<<
      blocks, threads, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      num_kernels, data_col, data_im, data_offset, data_mask, im_shape[0],
      im_shape[1], im_shape[2], kernel_shape[2], kernel_shape[3], paddings[0],
      paddings[1], strides[0], strides[1], dilations[0], dilations[1],
      channel_per_deformable_group, col_shape[1],
      2 * kernel_shape[2] * kernel_shape[3] * deformable_groups,
      deformable_groups, col_shape[2], col_shape[3], grad_offset, grad_mask);
}

template <typename T>
__global__ void ModulatedDeformableIm2colGpuKernel(
    const int nthreads, const T* data_im, const T* data_offset,
    const T* data_mask, const int height, const int width, const int kernel_h,
    const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
    const int stride_w, const int dilation_h, const int dilation_w,
    const int channel_per_deformable_group, const int batch_size,
    const int num_channels, const int deformable_group, const int height_col,
    const int width_col, T* data_col) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    const int w_col = i % width_col;
    const int h_col = (i / width_col) % height_col;
    const int b_col = (i / width_col) / height_col % batch_size;
    const int c_im = (i / width_col / height_col) / batch_size;
    const int c_col = c_im * kernel_h * kernel_w;

    const int deformable_group_index = c_im / channel_per_deformable_group;

    const int h_in = h_col * stride_h - pad_h;
    const int w_in = w_col * stride_w - pad_w;

    T* data_col_ptr =
        data_col +
        ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    const T* data_im_ptr =
        data_im + (b_col * num_channels + c_im) * height * width;
    const T* data_offset_ptr =
        data_offset +
        (b_col * deformable_group + deformable_group_index) * 2 * kernel_h *
            kernel_w * height_col * width_col;
    const T* data_mask_ptr =
        data_mask +
        (b_col * deformable_group + deformable_group_index) * kernel_h *
            kernel_w * height_col * width_col;

    for (int i = 0; i < kernel_h; ++i) {
      for (int j = 0; j < kernel_w; ++j) {
        const int data_offset_h_ptr =
            ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
        const int data_offset_w_ptr =
            ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
            w_col;
        const int data_mask_hw_ptr =
            ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;

        const T offset_h = data_offset_ptr[data_offset_h_ptr];
        const T offset_w = data_offset_ptr[data_offset_w_ptr];
        const T mask = data_mask_ptr[data_mask_hw_ptr];
        T val = static_cast<T>(0);
        const T h_im = h_in + i * dilation_h + offset_h;
        const T w_im = w_in + j * dilation_w + offset_w;
        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) {
          val =
              DmcnIm2colBilinear(data_im_ptr, width, height, width, h_im, w_im);
        }
        *data_col_ptr = val * mask;
        data_col_ptr += batch_size * height_col * width_col;
      }
    }
  }
}

template <typename T>
inline void ModulatedDeformableIm2col(
    const platform::DeviceContext& ctx, const T* data_im, const T* data_offset,
    const T* data_mask, const std::vector<int64_t> im_shape,
    const std::vector<int64_t> col_shape,
    const std::vector<int64_t> filter_shape, const std::vector<int> paddings,
    const std::vector<int> strides, const std::vector<int> dilations,
    const int deformable_groups, T* data_col) {
  int channel_per_deformable_group = im_shape[0] / deformable_groups;
  int num_kernels = im_shape[0] * col_shape[1] * col_shape[2] * col_shape[3];

  int blocks = NumBlocks(num_kernels);
  int threads = kNumCUDAThreads;

  ModulatedDeformableIm2colGpuKernel<T><<<
      blocks, threads, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      num_kernels, data_im, data_offset, data_mask, im_shape[1], im_shape[2],
      filter_shape[2], filter_shape[3], paddings[0], paddings[1], strides[0],
      strides[1], dilations[0], dilations[1], channel_per_deformable_group,
      col_shape[1], im_shape[0], deformable_groups, col_shape[2], col_shape[3],
      data_col);
}

template <typename T>
__global__ void FilterGradAddupGpuKernel(const int nthreads, const int n,
                                         const int height, const int width,
                                         const T* dweight_3d, T* filter_grad) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    filter_grad[i] = filter_grad[i] + dweight_3d[i];
  }
}

template <typename DeviceContext, typename T>
class DeformableConvCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor offset = *ctx.Input<Tensor>("Offset");
    const Tensor mask = *ctx.Input<Tensor>("Mask");
    Tensor filter = *ctx.Input<Tensor>("Filter");
    Tensor* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());

    auto& dev_ctx = ctx.cuda_device_context();

    const int groups = ctx.Attr<int>("groups");
    const int deformable_groups = ctx.Attr<int>("deformable_groups");
    const int im2col_step = ctx.Attr<int>("im2col_step");
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    const std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    const std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");

    const int batch_size = static_cast<int>(input->dims()[0]);

471 472
    std::vector<int64_t> filter_shape_vec(pten::vectorize(filter.dims()));
    std::vector<int64_t> output_shape_vec(pten::vectorize(output->dims()));
473 474 475 476 477 478 479 480 481

    // col_shape_vec: {c_i * k_h * k_w, im2col_step, o_h, o_w}
    std::vector<int64_t> col_buffer_shape_vec(filter_shape_vec.size());
    col_buffer_shape_vec[0] =
        input->dims()[1] * filter.dims()[2] * filter.dims()[3];
    col_buffer_shape_vec[1] = im2col_step;
    for (size_t j = 0; j < filter_shape_vec.size() - 2; ++j) {
      col_buffer_shape_vec[j + 2] = output_shape_vec[j + 2];
    }
482
    framework::DDim col_shape(pten::make_ddim(col_buffer_shape_vec));
483 484 485
    std::vector<int64_t> output_buffer_shape_vec(1);
    output_buffer_shape_vec[0] = batch_size * output_shape_vec[1] *
                                 output_shape_vec[2] * output_shape_vec[3];
486
    framework::DDim output_shape(pten::make_ddim(output_buffer_shape_vec));
487 488 489 490 491 492 493 494 495 496 497 498
    Tensor col_buffer;
    Tensor output_buffer;
    col_buffer = ctx.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
    output_buffer =
        ctx.AllocateTmpTensor<T, DeviceContext>(output_shape, dev_ctx);

    int64_t M = output_shape_vec[1] / groups;
    int64_t N = im2col_step * output_shape_vec[2] * output_shape_vec[3];
    int64_t K =
        input->dims()[1] * filter_shape_vec[2] * filter_shape_vec[3] / groups;

    Tensor weight_3d;
499
    weight_3d.ShareDataWith(filter).Resize(pten::make_ddim({groups, M, K}));
500 501
    Tensor col_buffer_3d;
    col_buffer_3d.ShareDataWith(col_buffer)
502
        .Resize(pten::make_ddim({groups, K, N}));
503 504
    Tensor output_4d;
    output_4d.ShareDataWith(output_buffer)
505
        .Resize(pten::make_ddim({batch_size / im2col_step, groups, M, N}));
506 507
    output_4d.mutable_data<T>(ctx.GetPlace());
    framework::DDim input_shape =
508 509
        pten::slice_ddim(input->dims(), 1, input->dims().size());
    std::vector<int64_t> input_shape_vec = pten::vectorize(input_shape);
510 511 512 513 514

    int input_dim = input->numel() / input->dims()[0];
    int input_offset_dim = offset.numel() / offset.dims()[0];
    int input_mask_dim = mask.numel() / mask.dims()[0];

515
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(dev_ctx);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

    const T* input_ptr = input->data<T>();
    const T* offset_ptr = offset.data<T>();
    const T* mask_ptr = mask.data<T>();
    col_buffer.mutable_data<T>(ctx.GetPlace());
    T* col_buffer_ptr = col_buffer.data<T>();

    for (int i = 0; i < batch_size / im2col_step; ++i) {
      ModulatedDeformableIm2col(
          ctx.device_context(), input_ptr + i * im2col_step * input_dim,
          offset_ptr + i * im2col_step * input_offset_dim,
          mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
          col_buffer_shape_vec, filter_shape_vec, paddings, strides, dilations,
          deformable_groups, col_buffer_ptr);

      Tensor output_3d = output_4d.Slice(i, i + 1).Resize(
532
          pten::slice_ddim(output_4d.dims(), 1, output_4d.dims().size()));
533
      for (int g = 0; g < groups; ++g) {
534 535
        Tensor weight_3d_slice = weight_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(weight_3d.dims(), 1, weight_3d.dims().size()));
536
        Tensor col_buffer_3d_slice =
537
            col_buffer_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
538
                col_buffer_3d.dims(), 1, col_buffer_3d.dims().size()));
539 540
        Tensor output_3d_slice = output_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(output_3d.dims(), 1, output_3d.dims().size()));
541 542 543 544 545 546

        blas.MatMul(weight_3d_slice, false, col_buffer_3d_slice, false, T(1.0),
                    &output_3d_slice, T(0.0));
      }
    }
    output->ShareDataWith(output_buffer)
547
        .Resize(pten::make_ddim(output_shape_vec));
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
  }
};

template <typename DeviceContext, typename T>
class DeformableConvGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor* offset_grad = ctx.Output<Tensor>(framework::GradVarName("Offset"));
    Tensor* mask_grad = ctx.Output<Tensor>(framework::GradVarName("Mask"));

    const Tensor* input = ctx.Input<Tensor>("Input");
    Tensor offset = *ctx.Input<Tensor>("Offset");
    Tensor mask = *ctx.Input<Tensor>("Mask");
    Tensor filter = *ctx.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad && !offset_grad && !mask_grad) return;

    int groups = ctx.Attr<int>("groups");
    int deformable_groups = ctx.Attr<int>("deformable_groups");
    int im2col_step = ctx.Attr<int>("im2col_step");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");

    auto& dev_ctx = ctx.cuda_device_context();
    const int batch_size = static_cast<int>(input->dims()[0]);

    framework::DDim input_shape =
579 580 581 582
        pten::slice_ddim(input->dims(), 1, input->dims().size());
    std::vector<int64_t> input_shape_vec = pten::vectorize(input_shape);
    std::vector<int64_t> filter_shape_vec(pten::vectorize(filter.dims()));
    std::vector<int64_t> output_shape_vec(pten::vectorize(output_grad->dims()));
583 584 585 586 587 588 589 590

    std::vector<int64_t> col_buffer_shape_vec(filter_shape_vec.size());
    col_buffer_shape_vec[0] =
        input->dims()[1] * filter.dims()[2] * filter.dims()[3];
    col_buffer_shape_vec[1] = im2col_step;
    for (size_t j = 0; j < filter_shape_vec.size() - 2; ++j) {
      col_buffer_shape_vec[j + 2] = output_shape_vec[j + 2];
    }
591
    framework::DDim col_shape(pten::make_ddim(col_buffer_shape_vec));
592 593 594
    std::vector<int64_t> output_buffer_shape_vec(1);
    output_buffer_shape_vec[0] = batch_size * output_shape_vec[1] *
                                 output_shape_vec[2] * output_shape_vec[3];
595
    framework::DDim output_shape(pten::make_ddim(output_buffer_shape_vec));
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    Tensor col_buffer;
    Tensor output_buffer;
    col_buffer = ctx.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
    output_buffer =
        ctx.AllocateTmpTensor<T, DeviceContext>(output_shape, dev_ctx);

    output_buffer.ShareDataWith(*output_grad);

    int64_t M =
        input_shape_vec[0] / groups * filter_shape_vec[2] * filter_shape_vec[3];
    int64_t N = im2col_step * output_shape_vec[2] * output_shape_vec[3];
    int64_t K = output_shape_vec[1] / groups;

    framework::DDim weight_3d_shape = {groups, K, M};
    framework::DDim out_grad_4d_shape = {batch_size / im2col_step, groups, K,
                                         N};
    framework::DDim col_buffer_3d_shape = {groups, M, N};
    framework::DDim filter_grad_shape = {groups, K, M};

    Tensor weight_3d;
    weight_3d.ShareDataWith(filter).Resize(weight_3d_shape);
    Tensor out_grad_4d;
    out_grad_4d.ShareDataWith(output_buffer).Resize(out_grad_4d_shape);
    Tensor col_buffer_3d;
    col_buffer_3d.ShareDataWith(col_buffer).Resize(col_buffer_3d_shape);

622
    pten::funcs::SetConstant<DeviceContext, T> set_zero;
623
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(dev_ctx);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

    col_buffer.mutable_data<T>(ctx.GetPlace());
    col_buffer_3d.mutable_data<T>(ctx.GetPlace());
    out_grad_4d.mutable_data<T>(ctx.GetPlace());

    int input_dim = input->numel() / input->dims()[0];
    int input_offset_dim = offset.numel() / offset.dims()[0];
    int input_mask_dim = mask.numel() / mask.dims()[0];

    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
      filter_grad->Resize(filter_grad_shape);
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
    }

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
    }

    if (offset_grad && mask_grad) {
      offset_grad->mutable_data<T>(ctx.GetPlace());
      mask_grad->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, offset_grad, static_cast<T>(0));
      set_zero(dev_ctx, mask_grad, static_cast<T>(0));
    }

    for (int i = 0; i < batch_size / im2col_step; ++i) {
652 653
      Tensor out_grad_3d = out_grad_4d.Slice(i, i + 1).Resize(
          pten::slice_ddim(out_grad_4d.dims(), 1, out_grad_4d.dims().size()));
654
      for (int g = 0; g < groups; ++g) {
655 656 657 658
        Tensor weight_3d_slice = weight_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(weight_3d.dims(), 1, weight_3d.dims().size()));
        Tensor out_grad_3d_slice = out_grad_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(out_grad_3d.dims(), 1, out_grad_3d.dims().size()));
659
        Tensor col_buffer_3d_slice =
660
            col_buffer_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
                col_buffer_3d.dims(), 1, col_buffer_3d.dims().size()));

        blas.MatMul(weight_3d_slice, true, out_grad_3d_slice, false, T(1.0),
                    &col_buffer_3d_slice, T(0.0));
      }
      col_buffer.Resize(col_shape);

      T* col_buffer_ptr = col_buffer.data<T>();
      const T* input_ptr = input->data<T>();
      const T* offset_ptr = offset.data<T>();
      const T* mask_ptr = mask.data<T>();

      if (mask_grad && offset_grad) {
        T* offset_grad_ptr = offset_grad->data<T>();
        T* mask_grad_ptr = mask_grad->data<T>();
        ModulatedDeformableCol2imCoord(
            ctx.device_context(), col_buffer_ptr,
            input_ptr + i * im2col_step * input_dim,
            offset_ptr + i * im2col_step * input_offset_dim,
            mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
            col_buffer_shape_vec, filter_shape_vec, paddings, strides,
            dilations, deformable_groups,
            offset_grad_ptr + i * im2col_step * input_offset_dim,
            mask_grad_ptr + i * im2col_step * input_mask_dim);
      }
      if (input_grad) {
        T* input_grad_ptr = input_grad->data<T>();
        ModulatedDeformableCol2im(
            ctx.device_context(), col_buffer_ptr,
            offset_ptr + i * im2col_step * input_offset_dim,
            mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
            col_buffer_shape_vec, filter_shape_vec, paddings, strides,
            dilations, deformable_groups,
            input_grad_ptr + i * im2col_step * input_dim);
        input_grad->Resize(input->dims());
      }

      ModulatedDeformableIm2col(
          ctx.device_context(), input_ptr + i * im2col_step * input_dim,
          offset_ptr + i * im2col_step * input_offset_dim,
          mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
          col_buffer_shape_vec, filter_shape_vec, paddings, strides, dilations,
          deformable_groups, col_buffer_ptr);

      col_buffer_3d.Resize(col_buffer_3d_shape);

      if (filter_grad) {
        Tensor dweight_3d;
        dweight_3d =
            ctx.AllocateTmpTensor<T, DeviceContext>(filter_grad_shape, dev_ctx);
        for (int g = 0; g < groups; ++g) {
          Tensor out_grad_3d_slice =
713
              out_grad_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
714 715
                  out_grad_3d.dims(), 1, out_grad_3d.dims().size()));
          Tensor col_buffer_3d_slice =
716
              col_buffer_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
717
                  col_buffer_3d.dims(), 1, col_buffer_3d.dims().size()));
718 719
          Tensor dweight_3d_slice = dweight_3d.Slice(g, g + 1).Resize(
              pten::slice_ddim(dweight_3d.dims(), 1, dweight_3d.dims().size()));
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

          blas.MatMul(out_grad_3d_slice, false, col_buffer_3d_slice, true,
                      T(1.0), &dweight_3d_slice, T(0.0));
        }
        FilterGradAddupGpuKernel<
            T><<<NumBlocks(dweight_3d.numel()), kNumCUDAThreads, 0,
                 ctx.cuda_device_context().stream()>>>(
            dweight_3d.numel(), groups, K, M, dweight_3d.data<T>(),
            filter_grad->data<T>());
      }
    }
    if (filter_grad) {
      filter_grad->Resize(filter.dims());
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(deformable_conv,
744 745
                        ops::DeformableConvCUDAKernel<CUDA, float>,
                        ops::DeformableConvCUDAKernel<CUDA, double>);
746
REGISTER_OP_CUDA_KERNEL(deformable_conv_grad,
747 748
                        ops::DeformableConvGradCUDAKernel<CUDA, float>,
                        ops::DeformableConvGradCUDAKernel<CUDA, double>);