test_boxps.py 5.6 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
import os
import paddle.fluid.core as core
import unittest
from paddle.fluid.layers.nn import _pull_box_sparse
H
hutuxian 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
from paddle.fluid.transpiler import collective


class TestTranspile(unittest.TestCase):
    """  TestCases for BoxPS Preload """

    def get_transpile(self, mode, trainers="127.0.0.1:6174"):
        config = fluid.DistributeTranspilerConfig()
        config.mode = 'collective'
        config.collective_mode = mode
        t = fluid.DistributeTranspiler(config=config)
        return t

    def test_transpile(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        t = self.get_transpile("single_process_multi_thread")
        t.transpile(
            trainer_id=0,
            startup_program=startup_program,
            trainers="127.0.0.1:6174",
            program=main_program)
        t = self.get_transpile("grad_allreduce")
        try:
            t.transpile(
                trainer_id=0,
                startup_program=startup_program,
                trainers="127.0.0.1:6174",
                program=main_program)
        except ValueError as e:
            print(e)

    def test_single_trainers(self):
        transpiler = collective.GradAllReduce(0)
        try:
            transpiler.transpile(
                startup_program=fluid.Program(),
                main_program=fluid.Program(),
                rank=1,
                endpoints="127.0.0.1:6174",
                current_endpoint="127.0.0.1:6174",
                wait_port="6174")
        except ValueError as e:
            print(e)
        transpiler = collective.LocalSGD(0)
        try:
            transpiler.transpile(
                startup_program=fluid.Program(),
                main_program=fluid.Program(),
                rank=1,
                endpoints="127.0.0.1:6174",
                current_endpoint="127.0.0.1:6174",
                wait_port="6174")
        except ValueError as e:
            print(e)
H
hutuxian 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113


class TestBoxPSPreload(unittest.TestCase):
    """  TestCases for BoxPS Preload """

    def test_boxps_cpu(self):
        self.run_boxps_preload(True)

    def test_boxps_gpu(self):
        self.run_boxps_preload(False)

    def run_boxps_preload(self, is_cpu=True):
        x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
        y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
        emb_x, emb_y = _pull_box_sparse([x, y], size=2)
        emb_xp = _pull_box_sparse(x, size=2)
        concat = layers.concat([emb_x, emb_y], axis=1)
        fc = layers.fc(input=concat,
                       name="fc",
                       size=1,
                       num_flatten_dims=1,
                       bias_attr=False)
        loss = layers.reduce_mean(fc)
        layers.Print(loss)
        place = fluid.CPUPlace() if is_cpu or not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        batch_size = 2

        def binary_print(slot, fout):
            fout.write(str(len(slot)) + " ")
            for e in slot:
                fout.write(str(e) + " ")

        batch1 = np.ones(
            (batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
        filelist = []
H
hutuxian 已提交
114
        place_str = "cpu" if is_cpu else "gpu"
H
hutuxian 已提交
115
        for i in range(2):
H
hutuxian 已提交
116
            filelist.append("test_hdfs_" + place_str + "_" + str(i))
H
hutuxian 已提交
117 118 119 120 121 122 123 124 125
        for f in filelist:
            with open(f, "w") as fout:
                for ins in batch1:
                    for slot in ins:
                        binary_print(slot, fout)
                fout.write("\n")

        def create_dataset():
            dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
126
            dataset.set_date("20190930")
H
hutuxian 已提交
127 128 129 130 131 132 133 134 135
            dataset.set_use_var([x, y])
            dataset.set_batch_size(2)
            dataset.set_thread(1)
            dataset.set_filelist(filelist)
            return dataset

        datasets = []
        datasets.append(create_dataset())
        datasets.append(create_dataset())
H
hutuxian 已提交
136 137 138 139 140 141 142 143
        optimizer = fluid.optimizer.SGD(learning_rate=0.5)
        optimizer = fluid.optimizer.PipelineOptimizer(
            optimizer,
            cut_list=[],
            place_list=[place],
            concurrency_list=[1],
            queue_size=1,
            sync_steps=-1)
H
hutuxian 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        optimizer.minimize(loss)
        exe.run(fluid.default_startup_program())
        datasets[0].load_into_memory()
        datasets[0].begin_pass()
        datasets[1].preload_into_memory()
        exe.train_from_dataset(
            program=fluid.default_main_program(),
            dataset=datasets[0],
            print_period=1)
        datasets[0].end_pass()
        datasets[1].wait_preload_done()
        datasets[1].begin_pass()
        exe.train_from_dataset(
            program=fluid.default_main_program(),
            dataset=datasets[1],
H
hutuxian 已提交
159 160
            print_period=1,
            debug=True)
H
hutuxian 已提交
161 162 163 164 165 166 167
        datasets[1].end_pass()
        for f in filelist:
            os.remove(f)


if __name__ == '__main__':
    unittest.main()