ConvBaseLayer.cpp 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ConvBaseLayer.h"
16
#include "paddle/math/MathUtils.h"
Y
Yu Yang 已提交
17
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23
namespace paddle {

bool ConvBaseLayer::init(const LayerMap& layerMap,
                         const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);
24
  isDeconv_ = (config_.type() == "exconv" || config_.type() == "cudnn_conv")
25 26
                  ? false
                  : true;
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40
  /* Initialize the convolutional layer parameter */
  numFilters_ = config_.num_filters();
  sharedBiases_ = config_.shared_biases();
  for (auto& inputConfig : config_.inputs()) {
    const ConvConfig& conf = inputConfig.conv_conf();
    padding_.push_back(conf.padding());
    stride_.push_back(conf.stride());
    filterSize_.push_back(conf.filter_size());
    paddingY_.push_back(conf.padding_y());
    strideY_.push_back(conf.stride_y());
    filterSizeY_.push_back(conf.filter_size_y());
    filterPixels_.push_back(filterSize_.back() * filterSizeY_.back());
    channels_.push_back(conf.channels());
L
Luo Tao 已提交
41 42
    imgSizeH_.push_back(conf.has_img_size_y() ? conf.img_size_y()
                                              : conf.img_size());
43
    imgSizeW_.push_back(conf.img_size());
Z
zhangjinchao01 已提交
44 45
    groups_.push_back(conf.groups());
    filterChannels_.push_back(conf.filter_channels());
L
Luo Tao 已提交
46
    outputH_.push_back(conf.has_output_y() ? conf.output_y() : conf.output_x());
47
    outputW_.push_back(conf.output_x());
Z
zhangjinchao01 已提交
48 49
  }

50 51 52 53 54 55 56 57 58 59 60 61
  CHECK(inputLayers_.size() == parameters_.size());
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    size_t height, width;
    height = filterPixels_[i] * filterChannels_[i];
    width = (!isDeconv_) ? numFilters_ : channels_[i];

    // create a new weight
    CHECK_EQ(parameters_[i]->getSize(), width * height);
    Weight* w = new Weight(height, width, parameters_[i]);
    weights_.emplace_back(w);
  }

Z
zhangjinchao01 已提交
62
  /* initialize the biases_ */
63
  if (biasParameter_.get()) {
Z
zhangjinchao01 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
    } else {
      biases_ =
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
    }
  }

  // default caffe model
  caffeMode_ = true;

  return true;
}

80 81 82 83 84 85 86 87 88 89
size_t ConvBaseLayer::calOutputSize() {
  auto clearAndReserve = [this](IntV* vec) {
    vec->clear();
    vec->reserve(this->inputLayers_.size());
  };
  clearAndReserve(&imgSizeH_);
  clearAndReserve(&imgSizeW_);
  clearAndReserve(&outputH_);
  clearAndReserve(&outputW_);
  size_t layerSize = 0;
90

91
  auto setLayerSize = [&](IntV& inH, IntV& inW, IntV& outH, IntV& outW) {
92
    for (size_t i = 0; i < inputLayers_.size(); i++) {
93 94
      inH.push_back(inputLayers_[i]->getOutput().getFrameHeight());
      inW.push_back(inputLayers_[i]->getOutput().getFrameWidth());
L
Luo Tao 已提交
95
      const ConvConfig& conf = config_.inputs(i).conv_conf();
96
      if (isDeconv_) {
L
Luo Tao 已提交
97 98 99
        if (inH[i] == 0)
          inH[i] = conf.has_output_y() ? conf.output_y() : conf.output_x();
        if (inW[i] == 0) inW[i] = conf.output_x();
100 101 102 103 104
        outH.push_back(imageSize(
            inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
        outW.push_back(imageSize(
            inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_));
      } else {
L
Luo Tao 已提交
105 106 107
        if (inH[i] == 0)
          inH[i] = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
        if (inW[i] == 0) inW[i] = conf.img_size();
108 109 110 111 112 113 114
        outH.push_back(outputSize(
            inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
        outW.push_back(outputSize(
            inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_));
      }
      CHECK_EQ(outH[i], outH[0]);
      CHECK_EQ(outW[i], outW[0]);
115
    }
116 117 118 119 120
    getOutput().setFrameHeight(outH[0]);
    getOutput().setFrameWidth(outW[0]);
    layerSize = outH[0] * outW[0] * size_t(numFilters_);
  };

121
  setLayerSize(imgSizeH_, imgSizeW_, outputH_, outputW_);
122

123
  return layerSize;
124 125
}

Z
zhangjinchao01 已提交
126
}  // namespace paddle