benchmark.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19 20
import numpy as np
import unittest
import time
import itertools
21
import six
22 23 24 25

import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
26
from op_test import OpTest
27 28 29


class BenchmarkSuite(OpTest):
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    def timeit_function(self, callback, iters, *args, **kwargs):
        assert iters != 0, "Iters should >= 1"
        start = time.time()
        for i in range(iters):
            callback(*args, **kwargs)
        elapse = time.time() - start
        return elapse / iters

    def _assert_cpu_gpu_same(self, cpu_outs, gpu_outs, fetch_list, atol):
        for item_cpu_out, item_gpu_out, variable in zip(cpu_outs, gpu_outs,
                                                        fetch_list):
            # the cpu version is baseline, expect gpu version keep same with cpu version.
            expect = item_cpu_out
            expect_t = np.array(item_cpu_out)
            actual = item_gpu_out
            actual_t = np.array(item_gpu_out)
47 48
            var_name = variable if isinstance(
                variable, six.string_types) else variable.name
49 50 51 52
            np.testing.assert_allclose(actual_t,
                                       expect_t,
                                       rtol=1e-05,
                                       atol=atol)
53
            self.assertListEqual(actual.lod(), expect.lod(),
54 55 56 57
                                 "Output (" + var_name + ") has different lod")

    def _get_input_names(self):
        inputs = []
M
minqiyang 已提交
58
        for name, value in six.iteritems(self.inputs):
59 60 61 62 63 64 65
            if isinstance(value, list):
                inputs.extend([sub_name for sub_name, _ in value])
            inputs.append(name)
        return inputs

    def _get_output_names(self):
        outputs = []
M
minqiyang 已提交
66
        for var_name, var in six.iteritems(self.outputs):
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            if isinstance(var, list):
                for sub_var_name, sub_var in var:
                    outputs.append(sub_var_name)
            else:
                outputs.append(var_name)
        if len(outputs) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                outputs.append(str(out_name))
        return outputs

    def check_output_stability(self, atol=1e-8):
        places = self._get_places()
        if len(places) < 2:
            return
        cpu_outs, fetch_list = self._calc_output(places[0])
        gpu_outs, _ = self._calc_output(places[1])
        self._assert_cpu_gpu_same(cpu_outs, gpu_outs, fetch_list, atol)

    def timeit_output_with_place(self, place, iters):
        return self.timeit_function(self.calc_output, iters, place)

    def timeit_output(self, iters=100):
        places = self._get_places()
        elapses = []
        for place in places:
            elapses.append(self.timeit_output_with_place(place, iters))
        for place, elapse in zip(places, elapses):
94 95
            print("One pass of ({2}_op) at {0} cost {1}".format(
                str(place), elapse, self.op_type))
96 97 98 99

    def timeit_grad_with_place(self, place, iters=100):
        inputs_to_check = self._get_input_names()
        output_names = self._get_output_names()
100 101 102 103 104 105
        return self.timeit_function(self._get_gradient,
                                    iters,
                                    inputs_to_check,
                                    place,
                                    output_names,
                                    no_grad_set=None)
106 107 108 109 110 111 112

    def timeit_grad(self, iters=100):
        places = self._get_places()
        elapses = []
        for place in places:
            elapses.append(self.timeit_grad_with_place(place, iters))
        for place, elapse in zip(places, elapses):
113 114
            print("One pass of ({2}_grad_op) at {0} cost {1}".format(
                str(place), elapse, self.op_type))