hl_cnn.h 11.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef HL_CNN_H_
#define HL_CNN_H_

#include "hl_base.h"

/**
 * @brief   Maximum pool forward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   inputData   input data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
30 31 32 33 34 35
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
Z
zhangjinchao01 已提交
36
 * @param[out]  tgtData     output data.
Q
qijun 已提交
37
 * @param[in]   tgtStride   stride between output data samples.
Z
zhangjinchao01 已提交
38 39
 *
 */
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
extern void hl_maxpool_forward(const int frameCnt,
                               const real* inputData,
                               const int channels,
                               const int height,
                               const int width,
                               const int pooledH,
                               const int pooledW,
                               const int sizeX,
                               const int sizeY,
                               const int strideH,
                               const int strideW,
                               const int paddingH,
                               const int paddingW,
                               real* tgtData,
                               const int tgtStride);
Z
zhangjinchao01 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67

/**
 * @brief   Maximum pool backward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   inputData   input data.
 * @param[out]  outData     output data.
 * @param[out]  outGrad     output grad data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
68 69 70 71
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
Z
zhangjinchao01 已提交
72 73
 * @param[in]   scaleA      scale.
 * @param[in]   scaleB      scale.
74 75 76
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
 * @param[out]  targetGrad  output grad.
77
 * @param[in]   outStride   stride between output data samples.
Z
zhangjinchao01 已提交
78 79
 *
 */
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
extern void hl_maxpool_backward(const int frameCnt,
                                const real* inputData,
                                const real* outData,
                                const real* outGrad,
                                const int channels,
                                const int height,
                                const int width,
                                const int pooledH,
                                const int pooledW,
                                const int sizeX,
                                const int sizeY,
                                const int strideH,
                                const int strideW,
                                const int paddingH,
                                const int paddingW,
                                real scaleA,
                                real scaleB,
                                real* targetGrad,
                                const int outStride);
Z
zhangjinchao01 已提交
99 100 101 102 103 104 105 106 107 108 109

/**
 * @brief   Averge pool forward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   inputData   input data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
110 111 112 113 114 115
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
Z
zhangjinchao01 已提交
116
 * @param[out]  tgtData     output data.
Q
qijun 已提交
117
 * @param[in]   tgtStride   stride between output data samples.
Z
zhangjinchao01 已提交
118 119
 *
 */
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
extern void hl_avgpool_forward(const int frameCnt,
                               const real* inputData,
                               const int channels,
                               const int height,
                               const int width,
                               const int pooledH,
                               const int pooledW,
                               const int sizeX,
                               const int sizeY,
                               const int strideH,
                               const int strideW,
                               const int paddingH,
                               const int paddingW,
                               real* tgtData,
                               const int tgtStride);
Z
zhangjinchao01 已提交
135 136 137 138 139

/**
 * @brief   Maximum pool backward.
 *
 * @param[in]   frameCnt    batch size of input image.
140
 * @param[in]   outGrad     output grad data.
Z
zhangjinchao01 已提交
141 142 143 144 145
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
146 147 148 149 150 151
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
Z
zhangjinchao01 已提交
152 153
 * @param[in]   scaleA      scale.
 * @param[in]   scaleB      scale.
154
 * @param[out]  backGrad    output grad.
155
 * @param[in]   outStride   stride between output data samples.
Z
zhangjinchao01 已提交
156 157
 *
 */
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
extern void hl_avgpool_backward(const int frameCnt,
                                const real* outGrad,
                                const int channels,
                                const int height,
                                const int width,
                                const int pooledH,
                                const int pooledW,
                                const int sizeX,
                                const int sizeY,
                                const int strideH,
                                const int strideW,
                                int paddingH,
                                int paddingW,
                                real scaleA,
                                real scaleB,
                                real* backGrad,
                                const int outStride);
Z
zhangjinchao01 已提交
175

L
liaogang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * @brief   Bilinear interpolation forward.
 *
 * @param[in]   inData      input value.
 * @param[in]   inImgH      input image height.
 * @param[in]   inImgW      input image width.
 * @param[in]   inputH      input batchSize.
 * @param[in]   inputW      input image data dim.
 * @param[out]  outData     output value.
 * @param[in]   outImgH     output image height.
 * @param[in]   outImgW     output image width.
 * @param[in]   outputH     output batchSize.
 * @param[in]   outputW     output image data dim.
 * @param[in]   numChannels number of channels.
L
liaogang 已提交
190 191
 * @param[in]   ratioH      inImgH / outImgH.
 * @param[in]   ratioW      inImgW / outImgW.
L
liaogang 已提交
192 193 194 195 196 197 198 199 200 201 202 203
 *
 */
extern void hl_bilinear_forward(const real* inData,
                                const size_t inImgH,
                                const size_t inImgW,
                                const size_t inputH,
                                const size_t inputW,
                                real* outData,
                                const size_t outImgH,
                                const size_t outImgW,
                                const size_t outputH,
                                const size_t outputW,
L
liaogang 已提交
204 205 206
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW);
L
liaogang 已提交
207

208
/**
L
liaogang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 * @brief   Bilinear interpolation backward.
 *
 * @param[out]  inGrad      input gradient.
 * @param[in]   inImgH      input image height.
 * @param[in]   inImgW      input image width.
 * @param[in]   inputH      input batchSize.
 * @param[in]   inputW      input image data dim.
 * @param[in]   outGrad     output gradient.
 * @param[in]   outImgH     output image height.
 * @param[in]   outImgW     output image width.
 * @param[in]   outputH     output batchSize.
 * @param[in]   outputW     output image data dim.
 * @param[in]   numChannels number of channels.
 * @param[in]   ratioH      inImgH / outImgH.
 * @param[in]   ratioW      inImgW / outImgW.
 *
 */
L
liaogang 已提交
226 227 228 229 230 231 232 233 234 235
extern void hl_bilinear_backward(real* inGrad,
                                 const size_t inImgH,
                                 const size_t inImgW,
                                 const size_t inputH,
                                 const size_t inputW,
                                 const real* outGrad,
                                 const size_t outImgH,
                                 const size_t outImgW,
                                 const size_t outputH,
                                 const size_t outputW,
L
liaogang 已提交
236 237 238
                                 const size_t numChannels,
                                 const real ratioH,
                                 const real ratioW);
L
liaogang 已提交
239

240 241 242 243 244 245 246 247 248 249 250
/**
 * @brief   MaxOut forward.
 *
 * @param[in]   inData      input data.
 * @param[out]  outData     output data.
 * @param[out]  idData      output maxId.
 * @param[in]   batchSize   batchSize.
 * @param[in]   size        number of channels * image height * image width.
 * @param[in]   featLen     feature length = image height * image width.
 * @param[in]   groups      number of groups.
 */
251 252 253 254 255 256 257
extern void hl_maxout_forward(const real* inData,
                              real* outData,
                              int* idData,
                              size_t batchSize,
                              size_t size,
                              size_t featLen,
                              size_t groups);
258 259 260 261 262 263 264 265 266 267 268 269

/**
 * @brief   MaxOut backward.
 *
 * @param[out]  inGrad      input grad data.
 * @param[in]   outGrad     output grad data.
 * @param[in]   idData      output maxId.
 * @param[in]   batchSize   batchSize.
 * @param[in]   size        number of channels * image height * image width.
 * @param[in]   featLen     feature length = image height * image width.
 * @param[in]   groups      number of groups.
 */
270 271 272 273 274 275 276
extern void hl_maxout_backward(real* inGrad,
                               const real* outGrad,
                               const int* idData,
                               size_t batchSize,
                               size_t size,
                               size_t featLen,
                               size_t groups);
277

Z
zhangjinchao01 已提交
278
#endif /* HL_CNN_H_ */