reduce_op.cu.h 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/framework/array.h"
33
#include "paddle/fluid/framework/op_registry.h"
34 35
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
36
#include "paddle/fluid/platform/cuda_device_function.h"
37
#include "paddle/fluid/platform/fast_divmod.h"
38

39 40
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
41
#define REDUCE_VEC_SIZE 4
42

43 44 45 46 47
namespace paddle {
namespace operators {
namespace detail {

// Post processing function for sum, max, min, prod, any
48
template <typename Tx, typename Ty = Tx>
49
struct IdentityFunctor {
50
  HOSTDEVICE explicit inline IdentityFunctor(int n) {}
51

52 53 54
  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x);
  }
55 56 57 58 59
};

// Post processing function for mean
template <typename T>
struct DivideFunctor {
60
  HOSTDEVICE explicit inline DivideFunctor(int n) : n_inv((T)(1.0 / n)) {}
61

62
  HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }
63 64 65 66 67 68 69 70 71 72 73 74 75 76

 private:
  T n_inv;
};

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

77 78
static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

79 80 81
// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
82 83 84 85 86 87 88 89 90 91 92
  int n = static_cast<int>(idx.size());
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

#ifdef __HIPCC__
93
constexpr int kMaxThread = 256;
94
constexpr int kWarpSize = 64;
95
#else
96
constexpr int kMaxThread = 128;
97
constexpr int kWarpSize = 32;
98 99
#endif

100 101 102
// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
  return block_dim >= kMaxThread ? kMaxThread : GetLastPow2(block_dim);
103 104
}

105 106
// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank, rank / 2,
                      platform::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank, rank / 2, reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank, true,
        platform::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank, lower_rank, upper_rank, reduce_rank));
  }
}

125
// convert dims from vector to array
126
template <typename T, size_t ElementCount, typename VectorLikeType>
127
static inline paddle::framework::Array<T, ElementCount> VectorToArray(
128
    const VectorLikeType& vec) {
129
  PADDLE_ENFORCE_LE(vec.size(), ElementCount,
130 131
                    platform::errors::InvalidArgument(
                        "Cub reduce Array: size not match. Received "
132
                        "vec.size() %d > ElementCount %d.",
133 134 135
                        vec.size(), ElementCount));
  size_t n = static_cast<size_t>(vec.size());
  paddle::framework::Array<T, ElementCount> ret;
136 137 138
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
139 140 141 142 143
  return ret;
}

}  // namespace detail

144
using Tensor = framework::Tensor;
145
constexpr int kMaxRank = framework::DDim::kMaxRank;
146

147
enum ReduceType {
148 149
  kReduceAll = 0x00,        // when reduce_rank == x_rank
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
150
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
151
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
struct IndexCalculator {
  IndexCalculator(int dim, const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
      : dim(dim) {
    dims = detail::VectorToArray<int, kMaxRank>(cal_dims);
    strides = detail::VectorToArray<int, kMaxRank>(full_strides);
    std::vector<FastDivMod> cal_divmoders;
    // fast divmod
    for (auto i : cal_strides) {
      cal_divmoders.push_back(FastDivMod(i));
    }
    divmoders = detail::VectorToArray<FastDivMod, kMaxRank>(cal_divmoders);
  }

  __device__ inline int Get(int offset) const {
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
  }

  int dim;
  framework::Array<int, kMaxRank> dims;
  framework::Array<int, kMaxRank> strides;
  framework::Array<FastDivMod, kMaxRank> divmoders;
};

189 190 191
// reduce config
template <typename Ty>
struct ReduceConfig {
192 193 194
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}
195 196 197 198 199

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();
200

201 202
    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();
203

204 205
    // step3: get the type of reduce
    SetReduceType();
206

207 208 209 210 211 212
    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data, const platform::Place& place,
213
                     framework::Tensor* tmp) {
214
    if (should_reduce_again) {
215
      output_data = tmp->mutable_data<Ty>(
216
          framework::make_ddim(
217
              {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}),
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
          place);
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
    std::set<int> reduce_set;
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }
234

235 236
    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());
237 238 239 240 241 242 243 244 245 246

    // update reduce_dim and x_dim
    std::vector<int> x_new_dim;

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

247
    if (reduce_dim_temp.size() > 1) {
248 249 250 251 252 253 254 255 256 257 258 259 260 261
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
262
        } else {
263
          x_new_dim.push_back(x_dim[i]);
264 265 266
        }
      }
    } else {
267
      x_new_dim = x_dim;
268 269
    }

270 271 272 273 274
    // update x_dim
    x_dim = x_new_dim;
    std::vector<int>().swap(x_new_dim);

    std::vector<int> reduce_dim_new;
275 276 277 278 279
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

280 281
    std::vector<int>().swap(reduce_dim);

282 283
    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
284
        x_new_dim.push_back(x_dim[i]);
285
        if ((is_reduced >> i) & 1)
286
          reduce_dim_new.push_back(x_new_dim.size() - 1);
287
      } else {
288
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
289 290 291
      }
    }

292 293
    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;
294 295 296 297 298 299 300 301 302 303 304 305 306

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());
307 308 309

    // if the last dim gets involved in reduction
    reduce_lastdim = (reduce_dim.back() == x_dim.size() - 1);
310 311 312 313 314 315 316 317 318 319 320 321
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
    std::vector<int> idx_dim;
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

322 323 324
    x_strides = detail::GetDimStrides(x_dim, idx_dim);
    reduce_strides = detail::GetDimStrides(x_dim, reduce_dim);
    left_strides = detail::GetDimStrides(x_dim, left_dim);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
341 342
    bool is_large_enough = (reduce_num > REDUCE_SPLIT_BOUNDARY / 2) ||
                           (left_num > REDUCE_SPLIT_BOUNDARY);
343 344 345 346 347

    if (rank == reduce_rank) {
      reduce_type = static_cast<int>(ReduceType::kReduceAll);
    } else if (rank == 2 && reduce_rank == 1 && reduce_dim[0] == 1) {
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
348 349
    } else if (reduce_rank == 1 &&
               ((rank == 2 && is_large_enough) || rank != 2)) {
350 351 352 353 354 355 356
      // ReduceFirstDim and reduceSecondDim
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
    constexpr int max_num_threads = detail::kMaxThread;

    // set block size.
    // 1. if reduce_lastdim == true, block is 1-D, no need reduction in block y;
    // 2. if reduce_lastdim == false, block is 2-D, if it is necessary,
    //    it should reduce in block y.
    int grid_num, reduce_num_per_thread;
    if (reduce_lastdim) {
      block_dim->x = detail::GetBlockDim(reduce_num);
      block_dim->y = 1;
      grid_num = left_num;
      reduce_num_per_thread =
          detail::AlignUp(reduce_num, block_dim->x * block_dim->y);
    } else {
      int block_x = detail::GetBlockDim(left_num);
      int block_y = detail::GetBlockDim(reduce_num);
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
      grid_num = detail::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = detail::AlignUp(reduce_num, block_dim->y);
    }
    int device_id = platform::GetCurrentDeviceId();
    int max_mp = platform::GetCUDAMultiProcessors(device_id);
    int max_threads_per_mp =
        platform::GetCUDAMaxThreadsPerMultiProcessor(device_id);
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
        detail::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
    int input_split_num_2 =
        detail::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = detail::AlignUp(max_num_blocks, grid_num);

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

416 417 418 419 420 421
  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDim() {
    // init
422
    int block_num = detail::GetBlockDim(reduce_num);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    should_reduce_again = false;

    dim3 block_dim(block_num, 1);
    dim3 grid_dim(left_num, 1);
    blocking_size = reduce_num;

    if (reduce_type == ReduceType::kReduceHigherDim) {
      int last_dim_num = x_dim.back();
      // update left_num
      int grid_z = left_num / last_dim_num;
      left_num = last_dim_num;

      block_dim.z = 1;
      grid_dim.z = grid_z;

      int device_id = platform::GetCurrentDeviceId();
      int max_mp = platform::GetCUDAMultiProcessors(device_id);
      int max_threads_per_mp =
          platform::GetCUDAMaxThreadsPerMultiProcessor(device_id);
      int max_threads = max_threads_per_mp * max_mp;

      // init
      int num_block = (max_threads / left_num);

447
      if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        blocking_size = detail::GetLastPow2(reduce_num / num_block);

        if (blocking_size <= 1) {
          blocking_size = detail::GetLastPow2(sqrt(reduce_num));
        } else if (blocking_size * 2 < reduce_num) {
          blocking_size *= 2;
        }

        should_reduce_again = true;

        block_dim.x = 32;
        block_dim.y = 1;
        grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x;
        grid_dim.y = (reduce_num + blocking_size - 1) / blocking_size;

      } else {
        block_dim.x = 32;
        block_dim.y = 1;
        blocking_size = reduce_num;
        grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x;
        grid_dim.y = 1;
      }
470 471
    } else if (reduce_type == ReduceType::kReduceAny) {
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    }

    block = block_dim;
    grid = grid_dim;
  }

 public:
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
492
  bool reduce_lastdim;
493 494 495 496 497 498 499

  Ty* output_data;

  dim3 block;
  dim3 grid;
};

500 501 502 503
static __device__ int SharedMemoryIndex(int index) {
  return (threadIdx.y + index) * blockDim.x + threadIdx.x;
}

504
template <typename T, typename ReduceOp>
505
static __device__ T WarpReduce(T val, ReduceOp reducer) {
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int stride = detail::kWarpSize / 2; stride > 0; stride >>= 1) {
    T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride);
    val = reducer(val, temp);
  }
  return val;
}

/* e.g.
 * |---------block---------|
 * |warp0|warp1|warp2|warp3|
 * |0~31|32~63|64~95|96~127|  ---->blockDim.x = 128
 *  \|/  \|/   \|/    \|/     ---->1. First WarpReduce in each warp
 * res0  res1  res2  res3     ---->2. Store result of each warp to shared memory
 *   \    \    /     /        ---->3. Load the result above from shared memory
 *        res                         to warp0 and process the second WarpReduce
 */
template <typename T, typename ReduceOp>
525
static __device__ T BlockXReduce(T val, ReduceOp reducer) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
  using detail::kWarpSize;
  __shared__ T shared[kWarpSize];
  int block_dim_x = blockDim.x;
  if (blockDim.x > kWarpSize) {
    block_dim_x = blockDim.x / kWarpSize;
    int lane = threadIdx.x % kWarpSize;
    int wid = threadIdx.x / kWarpSize;
    val = WarpReduce(val, reducer);
    if (lane == 0) {
      shared[wid] = val;
    }
    __syncthreads();
    val = shared[lane];
  }

  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int stride = 1; stride < block_dim_x; stride <<= 1) {
    T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride);
    val = reducer(val, temp);
  }
  return val;
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
template <typename T, typename ReduceOp>
static __device__ T BlockYReduce(T val, ReduceOp reducer) {
  __shared__ T shared_memory[detail::kMaxThread];
  shared_memory[SharedMemoryIndex(0)] = val;
  for (int stride = blockDim.y / 2; stride > 0; stride >>= 1) {
    __syncthreads();
    if (threadIdx.y < stride && threadIdx.y + stride < blockDim.y) {
      T temp = shared_memory[SharedMemoryIndex(stride)];
      val = reducer(val, temp);
    }
    shared_memory[SharedMemoryIndex(0)] = val;
  }
  return val;
}

565 566 567
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, this
// function will be used
// blockId.x -> left_num, threadId.x -> reduce_num
568
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp>
569 570 571
__device__ void ReduceLastDim(const Tx* x, Ty* y, ReduceOp reducer,
                              TransformOp transformer, Ty init,
                              int reduce_num) {
572 573 574
  int idx_x = blockIdx.x * reduce_num;
  int idx_y = threadIdx.x;
  Ty reduce_var = init;
575
  for (int idx_y = threadIdx.x; idx_y < reduce_num; idx_y += blockDim.x) {
576 577 578
    reduce_var =
        reducer(reduce_var, static_cast<Ty>(transformer(x[idx_x + idx_y])));
  }
579 580
  __syncthreads();

581
  reduce_var = BlockXReduce(reduce_var, reducer);
582 583

  if (threadIdx.x == 0) {
584
    y[blockIdx.x] = reduce_var;
585 586 587
  }
}

588 589 590 591 592
// when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
// function will be used
// eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
//     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx / 32
//     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
593
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp>
594 595 596
__device__ void ReduceHigherDim(const Tx* x, Ty* y, ReduceOp reducer,
                                TransformOp transformer, Ty init,
                                int reduce_num, int left_num, int block_size) {
597 598 599 600 601 602 603 604
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  int idy = blockIdx.y * block_size;

  Ty reduce_var = init;

  if (idx < left_num) {
    int loop = reduce_num - idy;
    loop = loop > block_size ? block_size : loop;
605

606 607
    for (int iy = 0; iy < loop; iy++) {
      int id = (idy + iy) * left_num + idx + blockIdx.z * reduce_num * left_num;
608
      reduce_var = reducer(reduce_var, static_cast<Ty>(transformer(x[id])));
609
    }
610

611
    y[idx + blockIdx.y * left_num + blockIdx.z * gridDim.y * left_num] =
612
        reduce_var;
613 614 615
  }
}

616 617
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp>
__device__ void ReduceAny(const Tx* x, Ty* y, ReduceOp reducer,
                          TransformOp transformer, Ty init, int reduce_num,
                          int left_num, bool reduce_lastdim,
                          const IndexCalculator& reduce_index_calculator,
                          const IndexCalculator& left_index_calculator) {
  int input_idx, left_idx, stride;
  // the last dim gets involved in reduction
  if (reduce_lastdim) {
    input_idx = blockIdx.y * blockDim.x + threadIdx.x;
    left_idx = blockIdx.x;
    stride = gridDim.y * blockDim.x;
  } else {
    input_idx = blockIdx.y * blockDim.y + threadIdx.y;
    left_idx = blockIdx.x * blockDim.x + threadIdx.x;
    stride = gridDim.y * blockDim.y;
634
  }
635 636 637 638
  // calculate the offset, means the addr where each thread really start.
  int input_offset = left_index_calculator.Get(left_idx);
  const Tx* input = x + input_offset;
  Ty reduce_var = init;
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
  // 1. reduce for each thread
  if (left_idx < left_num) {
    // load REDUCE_VEC_SIZE data once, and then compute
    Tx input_reg[REDUCE_VEC_SIZE];
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
    while (input_idx < bound) {
#pragma unroll
      for (int i = 0; i < REDUCE_VEC_SIZE; ++i) {
        int reduce_idx = input_idx + i * stride;
        int idx_x = reduce_index_calculator.Get(reduce_idx);
        input_reg[i] = input[idx_x];
      }
#pragma unroll
      for (int i = 0; i < REDUCE_VEC_SIZE; ++i) {
        reduce_var = reducer(reduce_var, transformer(input_reg[i]));
      }
      input_idx += REDUCE_VEC_SIZE * stride;
657 658
    }

659 660 661 662 663 664 665 666 667 668 669
    // deal with the remain part
    int input_idx_tmp = input_idx;
#pragma unroll
    for (int i = 0; i < REDUCE_VEC_SIZE; ++i) {
      if (input_idx >= reduce_num) {
        break;
      }
      int reduce_idx = input_idx;
      int idx_x = reduce_index_calculator.Get(reduce_idx);
      input_reg[i] = input[idx_x];
      input_idx += stride;
670
    }
671 672 673 674 675 676 677 678 679 680
    input_idx = input_idx_tmp;
#pragma unroll
    for (int i = 0; i < REDUCE_VEC_SIZE; ++i) {
      if (input_idx >= reduce_num) {
        break;
      }
      reduce_var = reducer(reduce_var, transformer(input_reg[i]));
      input_idx += stride;
    }
  }
681

682 683 684
  // 2. reduce in block y
  if (blockDim.y > 1) {
    reduce_var = BlockYReduce(reduce_var, reducer);
685 686 687
  }
  __syncthreads();

688 689 690 691 692 693 694 695 696 697
  if (reduce_lastdim) {
    // 3. reduce in block x
    reduce_var = BlockXReduce(reduce_var, reducer);
    if (threadIdx.x == 0) {
      y[blockIdx.x + blockIdx.y * gridDim.x] = reduce_var;
    }
  } else {
    if (left_idx < left_num && threadIdx.y == 0) {
      y[blockIdx.y * left_num + left_idx] = reduce_var;
    }
698 699 700
  }
}

701
// module function designed for global function
702 703 704 705 706 707 708
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp>
__device__ void ReduceModule(const Tx* x, Ty* y, ReduceOp reducer,
                             TransformOp transformer, Ty init, int reduce_num,
                             int left_num, int blocking_size, int reduce_type,
                             bool reduce_lastdim,
                             const IndexCalculator& reduce_index_calculator,
                             const IndexCalculator& left_index_calculator) {
709
  if (reduce_type == ReduceType::kReduceLastDim) {
710 711
    ReduceLastDim<Tx, Ty, ReduceOp, TransformOp>(x, y, reducer, transformer,
                                                 init, reduce_num);
712

713
    // reduce_rank == 1 && reduce_dim[0] != x_dim.size() - 1
714
  } else if (reduce_type == ReduceType::kReduceHigherDim) {
715 716 717
    ReduceHigherDim<Tx, Ty, ReduceOp, TransformOp>(
        x, y, reducer, transformer, init, reduce_num, left_num, blocking_size);

718
    // reduce_rank >= 2
719
  } else {
720 721 722
    ReduceAny<Tx, Ty, ReduceOp, TransformOp>(
        x, y, reducer, transformer, init, reduce_num, left_num, reduce_lastdim,
        reduce_index_calculator, left_index_calculator);
723 724 725
  }
}

726 727 728 729 730 731 732 733 734 735 736 737
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp>
__global__ void ReduceKernelFunction(const Tx* x, Ty* y, ReduceOp reducer,
                                     TransformOp transformer, Ty init,
                                     int reduce_num, int left_num,
                                     int blocking_size, int reduce_type,
                                     bool reduce_lastdim,
                                     IndexCalculator reduce_index_calculator,
                                     IndexCalculator left_index_calculator) {
  ReduceModule<Tx, Ty, ReduceOp, TransformOp>(
      x, y, reducer, transformer, init, reduce_num, left_num, blocking_size,
      reduce_type, reduce_lastdim, reduce_index_calculator,
      left_index_calculator);
738 739
}

740
template <typename Tx, typename Ty, typename ReduceOp>
741 742 743 744 745
static void LaunchReduceKernel(const Tx* x_data, Ty* y_data,
                               const ReduceOp& reducer, Ty init,
                               gpuStream_t stream, ReduceConfig<Ty> config) {
  using TransformOp = typename ReduceOp::Transformer;

746 747 748 749 750 751 752 753 754
  int reduce_rank = config.reduce_strides.size();
  int left_rank = config.left_strides.size();
  auto reduce_index_calculator = IndexCalculator(
      reduce_rank, config.reduce_dim, config.reduce_strides, config.x_strides);
  auto left_index_calculator = IndexCalculator(
      left_rank, config.left_dim, config.left_strides, config.x_strides);

  ReduceKernelFunction<Tx, Ty, ReduceOp,
                       TransformOp><<<config.grid, config.block, 0, stream>>>(
755 756
      x_data, config.output_data, reducer, TransformOp(config.reduce_num), init,
      config.reduce_num, config.left_num, config.blocking_size,
757 758
      config.reduce_type, config.reduce_lastdim, reduce_index_calculator,
      left_index_calculator);
759 760

  if (config.should_reduce_again) {
761 762 763 764 765 766 767 768 769
    dim3 block;
    dim3 grid;
    if (config.reduce_lastdim) {
      block = dim3(32, 1, 1);
      grid = dim3(detail::AlignUp(config.left_num, 32), 1, 1);
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }
770

771 772
    ReduceKernelFunction<Ty, Ty, ReduceOp, detail::IdentityFunctor<
                                               Ty>><<<grid, block, 0, stream>>>(
773 774
        config.output_data, y_data, reducer,
        detail::IdentityFunctor<Ty>(config.grid.y), init, config.grid.y,
775
        config.left_num, config.grid.y, ReduceType::kReduceHigherDim,
776
        config.reduce_lastdim, reduce_index_calculator, left_index_calculator);
777 778 779
  }
}

780 781 782 783 784
template <typename Tx, typename Ty,
          template <typename, typename> class ReduceOp>
void TensorReduceFunctorImpl(const framework::Tensor& x, framework::Tensor* y,
                             std::vector<int> origin_reduce_dims,
                             gpuStream_t stream) {
785 786
  auto x_dim = framework::vectorize<int>(x.dims());
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
787
  config.Run();  // get the parameters of LaunchReduceKernel
788

789
  // after config.run()
790
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
791 792
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;
793
  framework::Tensor tmp;
794 795
  auto x_data = x.data<Tx>();
  auto y_data = y->mutable_data<Ty>(x.place());
796 797 798 799 800 801 802

  if (config.reduce_num == 1) {
    auto out_dims = y->dims();
    framework::TensorCopy(x, y->place(), y);
    y->Resize(out_dims);
    return;
  }
803 804 805

  config.SetOutputData(y_data, x.place(), &tmp);

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
  using TransformOp = typename ReduceOp<Tx, Ty>::Transformer;
  auto reducer = ReduceOp<Tx, Ty>();
  // launch CUB::Reduce
  if (config.reduce_type == static_cast<int>(ReduceType::kReduceAll)) {
    cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(
        x_data, TransformOp(config.reduce_num));
    size_t temp_storage_bytes = 0;
    cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data,
                              config.reduce_num, reducer, reducer.initial(),
                              stream);
    framework::Tensor tmp;
    auto* temp_storage = tmp.mutable_data<uint8_t>(
        framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
        x.place());
    cub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x, y_data,
                              config.reduce_num, reducer, reducer.initial(),
                              stream);
823

824 825 826
    return;
  }

827 828
  LaunchReduceKernel<Tx, Ty, ReduceOp<Tx, Ty>>(
      x_data, y_data, reducer, reducer.initial(), stream, config);
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
template <typename Tx, template <typename, typename> class ReduceOp>
struct TensorReduceFunc {
  const framework::Tensor& x;
  framework::Tensor* y;
  std::vector<int> origin_reduce_dims;
  gpuStream_t stream;
  TensorReduceFunc(const framework::Tensor& x, framework::Tensor* y,
                   std::vector<int> origin_reduce_dims, gpuStream_t stream)
      : x(x), y(y), origin_reduce_dims(origin_reduce_dims), stream(stream) {}

  template <typename Ty>
  void apply() const {
    TensorReduceFunctorImpl<Tx, Ty, ReduceOp>(x, y, origin_reduce_dims, stream);
  }
};

847 848
}  // namespace operators
}  // namespace paddle