raw_program_optimizer.py 20.0 KB
Newer Older
1
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from __future__ import print_function
from __future__ import division
import os
17 18
import collections
import numpy as np
19 20 21

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
22
from paddle.fluid.dygraph import Layer, LayerList
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
from ..base.private_helper_function import wait_server_ready
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op


class RawProgramOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(RawProgramOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self.global_ring_id = 0

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(RawProgramOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
        self.without_graph_optimization = user_defined_strategy.without_graph_optimization
44 45 46
        self.fuse_all_reduce_ops = user_defined_strategy.fuse_all_reduce_ops
        if self.fuse_all_reduce_ops:
            self.fuse_grad_size_in_num = user_defined_strategy.fuse_grad_size_in_num
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False

        if self.without_graph_optimization == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.without_graph_optimization = False

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.without_graph_optimization = True

    def _broadcast_params(self, ring_id):
        block = self.startup_program.global_block()
        param = None
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        if not param: return  # no parameter on this device
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    def _get_process_group_info(self):
        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

    def _init_process_group(self):
        self._get_process_group_info()
        collective_helper = CollectiveHelper(self.role_maker, wait_port=False)
        # Create global ring for all gpus (ring_id = 0)
        collective_helper._init_communicator(
            self.startup_program, self.current_endpoint, self.global_endpoints,
            self.global_rank, self.global_ring_id, True, self.global_ring_id,
            True)
        self._broadcast_params(self.global_ring_id)

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
        if startup_program is None:
            startup_program = fluid.default_startup_program()
        self.startup_program = startup_program

        block = loss.block
        program = block.program
        self.main_program = program

        optimize_ops, params_grads = self.inner_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set)
李季 已提交
122 123
        if self.nranks == 1:
            return optimize_ops, params_grads
124 125 126 127 128 129 130 131 132
        self._init_process_group()

        self.main_program = program
        if self.nranks > 1:
            self._transpile_main_program(loss)
        return optimize_ops, params_grads

    def _transpile_main_program(self, loss):
        self._insert_loss_grad_ops(loss)
133 134 135 136 137
        if self.fuse_all_reduce_ops and core.is_compiled_with_npu():
            self._calc_stream = True
            self._allreduce_fusion_program()
        else:
            self._insert_allreduce_ops()
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    def _insert_loss_grad_ops(self, loss):
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
        block = self.main_program.global_block()
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self):
        block = self.main_program.global_block()
        ring_id = self.global_ring_id
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.attr(OP_ROLE_VAR_KEY)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = 1
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue

                    block._insert_op(
                        idx + offset,
                        type='c_sync_calc_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={OP_ROLE_KEY: OpRole.Backward, })
                    offset += 1
                    block._insert_op(
                        idx + offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op(
                    idx,
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
                break
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

    # TODO(Liu yuang): ADD CUDA allreduce_fusion fuction.
    # This function helps reduce the input of allreduce by integrating can save communication time.
    def _allreduce_fusion_program(self):
        block = self.main_program.global_block()
        ring_id = self.global_ring_id
        record_idx, allreduce_input_vars, allreduce_output_vars = [], [], []
        block_ops = len(list(enumerate(block.ops)))

        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.attr(OP_ROLE_VAR_KEY)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    param = block.var(param_name)
                    grad_name = op_role_var[i + 1]
                    grad = block.var(grad_name)
                    if param.is_distributed:
                        continue
                    if ".cast_fp16@GRAD" in grad_name:
                        param_name = param_name + ".cast_fp16"
                        if not block.has_var(param_name):
                            raise ValueError("op cast name error {}".format(
                                op.type))
                        else:
                            param = block.var(param_name)

                    if len(allreduce_output_vars) == 0:
                        allreduce_output_vars.append([grad])
                        allreduce_input_vars.append([param])
                        if self.fuse_grad_size_in_num == 1:
                            record_idx.append([idx, idx])
                            continue
                        record_idx.append([-2, idx])
                    elif len(allreduce_output_vars[
                            -1]) == self.fuse_grad_size_in_num:
                        allreduce_output_vars.append([grad])
                        allreduce_input_vars.append([param])
                        if self.fuse_grad_size_in_num == 1:
                            record_idx.append([idx, idx])
                            continue
                        if idx != block_ops - 1:
                            record_idx.append([-2, idx])
                    else:
                        allreduce_output_vars[-1].append(grad)
                        allreduce_input_vars[-1].append(param)
                        record_idx[-1][0] = idx

                if record_idx[-1][0] == -2:
                    record_idx[-1][0] = record_idx[-1][1]

        assert len(allreduce_output_vars) == len(
            record_idx
        ), "It has different lens between the allreduce_output_vars and record_idx."

        if not allreduce_output_vars or not allreduce_input_vars:
            return

        self.vars = collections.OrderedDict()
        index, offset_pos, pos, offset = 0, 0, 0, 0
        start, end = record_idx[index]
        men_list = [end, start]

        # Here we need to explain the flag. When integrating OP, we will encounter different groups of the same Op.
        # Because we insert coalesce tensor in reverse ops,
        # we need to use flag to record whether the current OP has been inserted into coalesce tensor。
        # For example:
        # [(3, 2), (2, 2), (1, 0)], (3, 2), (2, 2) using same op, but in different groups.

        for idx, op in reversed(list(enumerate(block.ops))):
            if idx == start:
                pos = 0
                flag = True if end == men_list[-1] else False
                offset = offset_pos if flag else 0
                done_output_vars, done_input_vars = self._split_fuction(
                    allreduce_output_vars[index], allreduce_input_vars[index])
                for id_, done_output_var in enumerate(done_output_vars):
                    if flag:
                        tmp_var = block.create_var(
                            name=unique_name.generate(
                                'FusedOutput_{}_{}'.format(start, id_ +
                                                           offset)),
                            dtype=done_output_var[0].dtype,
                            persistable=False,
                            stop_gradient=True)
                        self.vars['FusedOutput_{}_{}'.format(start, id_ +
                                                             offset)] = tmp_var

                        block._insert_op(
                            idx + id_ + offset,
                            type="coalesce_tensor",
                            inputs={"Input": done_input_vars[id_]},
                            outputs={
                                "Output": done_output_var,
                                "FusedOutput": tmp_var
                            },
                            attrs={
                                "copy_data": False,
                                "use_align": True,
                                "dtype": done_output_var[0].dtype
                            })
                        pos += 1
                    else:
                        tmp_var = block.create_var(
                            name=unique_name.generate(
                                'FusedOutput_{}_{}'.format(start, id_)),
                            dtype=done_output_var[0].dtype,
                            persistable=False,
                            stop_gradient=True)
                        self.vars['FusedOutput_{}_{}'.format(start,
                                                             id_)] = tmp_var

                        block._insert_op(
                            idx + id_,
                            type="coalesce_tensor",
                            inputs={"Input": done_input_vars[id_]},
                            outputs={
                                "Output": done_output_var,
                                "FusedOutput": tmp_var
                            },
                            attrs={
                                "copy_data": False,
                                "use_align": True,
                                "dtype": done_output_var[0].dtype
                            })
                        pos += 1
                offset_pos = pos

                # TODO(Liu yuang): ADD CUDA and NPU's EVENT and c_allreduce_sum.
                for id_ in range(len(done_output_vars)):
                    if flag:
                        block._insert_op(
                            end + id_ + pos + 1,
                            type='c_allreduce_sum',
                            inputs={
                                'X': self.vars['FusedOutput_{}_{}'.format(
                                    start, id_ + offset)]
                            },
                            outputs={
                                'Out': self.vars['FusedOutput_{}_{}'.format(
                                    start, id_ + offset)]
                            },
                            attrs={
                                'ring_id': ring_id,
                                'use_calc_stream': True
                                if self._calc_stream else False,
                                OP_ROLE_KEY: OpRole.Backward
                            })
                    else:
                        block._insert_op(
                            end + id_ + pos + 1,
                            type='c_allreduce_sum',
                            inputs={
                                'X': self.vars['FusedOutput_{}_{}'.format(start,
                                                                          id_)]
                            },
                            outputs={
                                'Out': self.vars['FusedOutput_{}_{}'.format(
                                    start, id_)]
                            },
                            attrs={
                                'ring_id': ring_id,
                                'use_calc_stream': True
                                if self._calc_stream else False,
                                OP_ROLE_KEY: OpRole.Backward
                            })
                index += 1
                men_list.append(end)
                men_list.append(start)
                if len(record_idx) == index:
                    start = end = -1
                    continue
                start, end = record_idx[index]

        if not self._calc_stream:
            for idx, op in enumerate(block.ops):
                if is_optimizer_op(op):
                    block._insert_op(
                        idx,
                        type='c_sync_comm_stream',
                        inputs={'X': block.create_var()},
                        outputs={'Out': block.create_var()},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })
                    break

    # Integrate grads of the same type to form a combination. If skip_comb is selected, will return grads of the same group.
    # For example:[(fp16, fp16), (fp32), (fp16)] -> [(fp16, fp16, fp16), (fp32)]
    def _split_fuction(self,
                       allreduce_output_vars,
                       allreduce_input_vars,
                       skip_comb=True):
        input_vars, final_input_vars, output_vars, final_output_vars = [], [], [], []
        if len(allreduce_output_vars) - 1 == 0:
            final_output_vars.append(allreduce_output_vars)
            final_input_vars.append(allreduce_input_vars)
            return final_output_vars, final_input_vars

        for idx in range(len(allreduce_input_vars) - 1):
            if allreduce_input_vars[idx].dtype == allreduce_input_vars[idx +
                                                                       1].dtype:
                input_vars.append(allreduce_input_vars[idx])
                if idx == len(allreduce_input_vars) - 2:
                    input_vars.append(allreduce_input_vars[idx + 1])
                    final_input_vars.append(input_vars)
            else:
                input_vars.append(allreduce_input_vars[idx])
                final_input_vars.append(input_vars)
                input_vars = []
                if idx == len(allreduce_input_vars) - 2:
                    input_vars.append(allreduce_input_vars[idx + 1])
                    final_input_vars.append(input_vars)

        for idx in range(len(allreduce_output_vars) - 1):
            if allreduce_output_vars[idx].dtype == allreduce_output_vars[
                    idx + 1].dtype:
                output_vars.append(allreduce_output_vars[idx])
                if idx == len(allreduce_output_vars) - 2:
                    output_vars.append(allreduce_output_vars[idx + 1])
                    final_output_vars.append(output_vars)
            else:
                output_vars.append(allreduce_output_vars[idx])
                final_output_vars.append(output_vars)
                output_vars = []
                if idx == len(allreduce_output_vars) - 2:
                    output_vars.append(allreduce_output_vars[idx + 1])
                    final_output_vars.append(output_vars)
        if skip_comb:
            input_fp16_vars, input_fp32_vars, output_fp16_vars, output_fp32_vars = [], [], [], []
            for final_input_var in final_input_vars:
                if final_input_var[0].dtype == core.VarDesc.VarType.FP16:
                    input_fp16_vars.extend(final_input_var)
                else:
                    input_fp32_vars.extend(final_input_var)

            for final_output_var in final_output_vars:
                if final_output_var[0].dtype == core.VarDesc.VarType.FP16:
                    output_fp16_vars.extend(final_output_var)
                else:
                    output_fp32_vars.extend(final_output_var)
            final_output_vars, final_input_vars = [], []
            if output_fp16_vars:
                final_output_vars.append(output_fp16_vars)
            if output_fp32_vars:
                final_output_vars.append(output_fp32_vars)
            if input_fp16_vars:
                final_input_vars.append(input_fp16_vars)
            if input_fp32_vars:
                final_input_vars.append(input_fp32_vars)

        return final_output_vars, final_input_vars