ps_gpu_wrapper.h 15.3 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18 19 20 21 22 23 24 25

#include <atomic>
#include <ctime>
#include <map>
#include <memory>
#include <random>
#include <string>
#include <unordered_map>
Y
yaoxuefeng 已提交
26
#include <unordered_set>
T
Thunderbrook 已提交
27
#include <vector>
28 29 30 31
#ifdef PADDLE_WITH_GLOO
#include <gloo/broadcast.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
32
#include "paddle/fluid/distributed/ps/thirdparty/round_robin.h"
Y
yaoxuefeng 已提交
33
#include "paddle/fluid/framework/data_set.h"
T
Thunderbrook 已提交
34 35 36
#include "paddle/fluid/framework/fleet/heter_context.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
Y
yaoxuefeng 已提交
37
#include "paddle/fluid/framework/fleet/heter_ps/mem_pool.h"
T
Thunderbrook 已提交
38 39 40
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable_helper.h"
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
42
#include "paddle/fluid/platform/dynload/nccl.h"
T
Thunderbrook 已提交
43 44
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
45
#ifdef PADDLE_WITH_PSCORE
46
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
T
Thunderbrook 已提交
47
#endif
T
Thunderbrook 已提交
48 49 50
#ifdef PADDLE_WITH_PSLIB
#include "afs_api.h"
#endif
T
Thunderbrook 已提交
51 52 53 54

namespace paddle {
namespace framework {

Y
yaoxuefeng 已提交
55 56 57
#define TYPEALIGN(ALIGNVAL, LEN) \
  (((uint64_t)(LEN) + ((ALIGNVAL)-1)) & ~((uint64_t)((ALIGNVAL)-1)))

T
Thunderbrook 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#ifdef PADDLE_WITH_PSLIB
class AfsWrapper {
 public:
  AfsWrapper() {}
  virtual ~AfsWrapper() {}
  void init(const std::string& fs_name, const std::string& fs_user,
            const std::string& pass_wd, const std::string& conf);
  int remove(const std::string& path);
  int mkdir(const std::string& path);
  std::vector<std::string> list(const std::string& path);

  int exist(const std::string& path);
  int upload(const std::string& local_file, const std::string& afs_file);

  int download(const std::string& local_file, const std::string& afs_file);

 private:
  paddle::ps::AfsApiWrapper afs_handler_;
};
#endif

T
Thunderbrook 已提交
79 80 81 82 83 84 85
class PSGPUWrapper {
 public:
  virtual ~PSGPUWrapper() { delete HeterPs_; }

  PSGPUWrapper() {
    HeterPs_ = NULL;
    sleep_seconds_before_fail_exit_ = 300;
T
Thunderbrook 已提交
86 87 88 89
    hbm_thread_pool_.resize(thread_keys_shard_num_);
    for (size_t i = 0; i < hbm_thread_pool_.size(); i++) {
      hbm_thread_pool_[i].reset(new ::ThreadPool(1));
    }
T
Thunderbrook 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  }

  void PullSparse(const paddle::platform::Place& place, const int table_id,
                  const std::vector<const uint64_t*>& keys,
                  const std::vector<float*>& values,
                  const std::vector<int64_t>& slot_lengths,
                  const int hidden_size);
  void PushSparseGrad(const paddle::platform::Place& place, const int table_id,
                      const std::vector<const uint64_t*>& keys,
                      const std::vector<const float*>& grad_values,
                      const std::vector<int64_t>& slot_lengths,
                      const int hidden_size, const int batch_size);
  void CopyKeys(const paddle::platform::Place& place, uint64_t** origin_keys,
                uint64_t* total_keys, const int64_t* gpu_len, int slot_num,
                int total_len);
  void CopyForPull(const paddle::platform::Place& place, uint64_t** gpu_keys,
                   const std::vector<float*>& values,
                   const FeatureValue* total_values_gpu, const int64_t* gpu_len,
                   const int slot_num, const int hidden_size,
                   const int64_t total_length);

  void CopyForPush(const paddle::platform::Place& place,
                   const std::vector<const float*>& grad_values,
                   FeaturePushValue* total_grad_values_gpu,
                   const std::vector<int64_t>& slot_lengths,
                   const int hidden_size, const int64_t total_length,
                   const int batch_size);

118
  void BuildGPUTask(std::shared_ptr<HeterContext> gpu_task);
119 120
  void PreBuildTask(std::shared_ptr<HeterContext> gpu_task);
  void BuildPull(std::shared_ptr<HeterContext> gpu_task);
121 122 123 124
  void LoadIntoMemory(bool is_shuffle);
  void BeginPass();
  void EndPass();
  void start_build_thread();
125
  void pre_build_thread();
126
  void build_task();
127 128 129 130 131 132 133 134 135 136

  void Finalize() {
    VLOG(3) << "PSGPUWrapper Begin Finalize.";
    if (s_instance_ == nullptr) {
      return;
    }
    data_ready_channel_->Close();
    buildcpu_ready_channel_->Close();
    gpu_free_channel_->Close();
    running_ = false;
137 138
    VLOG(3) << "begin stop pre_build_threads_";
    pre_build_threads_.join();
139 140 141 142
    s_instance_ = nullptr;
    VLOG(3) << "PSGPUWrapper Finalize Finished.";
  }

T
Thunderbrook 已提交
143
  void InitializeGPU(const std::vector<int>& dev_ids) {
144
    if (s_instance_ != NULL && is_initialized_ == false) {
T
Thunderbrook 已提交
145
      VLOG(3) << "PSGPUWrapper Begin InitializeGPU";
146
      is_initialized_ = true;
T
Thunderbrook 已提交
147 148
      resource_ = std::make_shared<HeterPsResource>(dev_ids);
      resource_->enable_p2p();
149
      keys_tensor.resize(resource_->total_device());
Y
yaoxuefeng 已提交
150 151 152 153 154 155 156 157 158
#ifdef PADDLE_WITH_GLOO
      auto gloo = paddle::framework::GlooWrapper::GetInstance();
      if (gloo->Size() > 1) {
        multi_node_ = 1;
      }
#else
      PADDLE_THROW(
          platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      if (multi_node_) {
        int dev_size = dev_ids.size();
        // init inner comm
        inner_comms_.resize(dev_size);
        inter_ncclids_.resize(dev_size);
        platform::dynload::ncclCommInitAll(&(inner_comms_[0]), dev_size,
                                           &dev_ids[0]);
// init inter comm
#ifdef PADDLE_WITH_GLOO
        inter_comms_.resize(dev_size);
        if (gloo->Rank() == 0) {
          for (int i = 0; i < dev_size; ++i) {
            platform::dynload::ncclGetUniqueId(&inter_ncclids_[i]);
          }
        }

        PADDLE_ENFORCE_EQ(
            gloo->IsInitialized(), true,
            platform::errors::PreconditionNotMet(
                "You must initialize the gloo environment first to use it."));
        gloo::BroadcastOptions opts(gloo->GetContext());
        opts.setOutput(&inter_ncclids_[0], dev_size);
        opts.setRoot(0);
        gloo::broadcast(opts);

        for (int i = 0; i < dev_size; ++i) {
          platform::dynload::ncclCommInitRank(&inter_comms_[i], gloo->Size(),
                                              inter_ncclids_[i], gloo->Rank());
        }
        node_size_ = gloo->Size();
#else
        PADDLE_THROW(
            platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
      }
Y
yaoxuefeng 已提交
194
      heter_devices_ = dev_ids;
195 196 197 198 199 200 201 202 203 204 205
      data_ready_channel_->Open();
      data_ready_channel_->SetCapacity(3);
      buildcpu_ready_channel_->Open();
      buildcpu_ready_channel_->SetCapacity(3);
      gpu_free_channel_->Open();
      gpu_free_channel_->SetCapacity(1);

      current_task_ = nullptr;
      gpu_free_channel_->Put(current_task_);

      table_id_ = 0;
206

207 208
      // start build cpu&gpu ps thread
      start_build_thread();
T
Thunderbrook 已提交
209 210
    }
  }
Y
yaoxuefeng 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

  void SetSparseSGD(float nonclk_coeff, float clk_coeff, float min_bound,
                    float max_bound, float learning_rate, float initial_g2sum,
                    float initial_range);
  void SetEmbedxSGD(float mf_create_thresholds, float mf_learning_rate,
                    float mf_initial_g2sum, float mf_initial_range,
                    float mf_min_bound, float mf_max_bound);
  void InitializeGPUServer(std::unordered_map<std::string, float> config) {
    float nonclk_coeff = (config.find("nonclk_coeff") == config.end())
                             ? 1.0
                             : config["nonclk_coeff"];
    float clk_coeff =
        (config.find("clk_coeff") == config.end()) ? 1.0 : config["clk_coeff"];
    float min_bound = (config.find("min_bound") == config.end())
                          ? -10000.0
                          : config["min_bound"];
    float max_bound = (config.find("max_bound") == config.end())
                          ? 10000.0
                          : config["max_bound"];
    float learning_rate = (config.find("learning_rate") == config.end())
                              ? 1.0
                              : config["learning_rate"];
    float initial_g2sum = (config.find("initial_g2sum") == config.end())
                              ? 1.0
                              : config["initial_g2sum"];
    float initial_range = (config.find("initial_range") == config.end())
                              ? 1.0
                              : config["initial_range"];

    // mf config settings
    float mf_create_thresholds =
        (config.find("mf_create_thresholds") == config.end())
            ? static_cast<float>(1.0)
            : config["mf_create_thresholds"];
    float mf_learning_rate = (config.find("mf_learning_rate") == config.end())
                                 ? 1.0
                                 : config["mf_learning_rate"];
    float mf_initial_g2sum = (config.find("mf_initial_g2sum") == config.end())
                                 ? 1.0
                                 : config["mf_initial_g2sum"];
    float mf_initial_range = (config.find("mf_initial_range") == config.end())
                                 ? 1.0
                                 : config["mf_initial_range"];
    float mf_min_bound = (config.find("mf_min_bound") == config.end())
                             ? 1.0
                             : config["mf_min_bound"];
    float mf_max_bound = (config.find("mf_max_bound") == config.end())
                             ? 1.0
                             : config["mf_max_bound"];
    for (size_t i = 0; i < heter_devices_.size(); i++) {
261
      PADDLE_ENFORCE_GPU_SUCCESS(cudaSetDevice(heter_devices_[i]));
Y
yaoxuefeng 已提交
262 263 264 265 266 267 268
      this->SetSparseSGD(nonclk_coeff, clk_coeff, min_bound, max_bound,
                         learning_rate, initial_g2sum, initial_range);
      this->SetEmbedxSGD(mf_create_thresholds, mf_learning_rate,
                         mf_initial_g2sum, mf_initial_range, mf_min_bound,
                         mf_max_bound);
    }
  }
269 270 271 272 273 274
  void SetDate(int year, int month, int day) {
    year_ = year;
    month_ = month;
    day_ = day;
  }

Y
yaoxuefeng 已提交
275 276
  void SetDataset(Dataset* dataset) { dataset_ = dataset; }

T
Thunderbrook 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  // PSGPUWrapper singleton
  static std::shared_ptr<PSGPUWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PSGPUWrapper());
    }
    return s_instance_;
  }
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>& GetLocalTable(
      int table_id) {
    return local_tables_[table_id];
  }
  void SetSlotVector(const std::vector<int>& slot_vector) {
    slot_vector_ = slot_vector;
  }

Y
yaoxuefeng 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  void SetSlotOffsetVector(const std::vector<int>& slot_offset_vector) {
    slot_offset_vector_ = slot_offset_vector;
  }

  void SetSlotDimVector(const std::vector<int>& slot_mf_dim_vector) {
    slot_mf_dim_vector_ = slot_mf_dim_vector;
    assert(slot_mf_dim_vector_.size() == slot_vector_.size());
    for (size_t i = 0; i < slot_mf_dim_vector.size(); i++) {
      slot_dim_map_[slot_vector_[i]] = slot_mf_dim_vector_[i];
    }

    std::unordered_set<int> dims_set;
    for (auto& it : slot_dim_map_) {
      dims_set.insert(it.second);
    }
    size_t num_of_dim = dims_set.size();
    index_dim_vec_.resize(num_of_dim);
    index_dim_vec_.assign(dims_set.begin(), dims_set.end());
    std::sort(index_dim_vec_.begin(), index_dim_vec_.end());
    std::unordered_map<int, int> dim_index_map;
    for (size_t i = 0; i < num_of_dim; i++) {
      dim_index_map[index_dim_vec_[i]] = i;
    }
315 316
    hbm_pools_.resize(resource_->total_device() * num_of_dim);
    mem_pools_.resize(resource_->total_device() * num_of_dim);
Y
yaoxuefeng 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329
    max_mf_dim_ = index_dim_vec_.back();
    multi_mf_dim_ = (dim_index_map.size() >= 1) ? dim_index_map.size() : 0;
    resource_->set_multi_mf(multi_mf_dim_, max_mf_dim_);
    slot_index_vec_.resize(slot_mf_dim_vector_.size());
    for (size_t i = 0; i < slot_index_vec_.size(); i++) {
      slot_index_vec_[i] = dim_index_map[slot_mf_dim_vector_[i]];
    }
    val_type_size_ =
        TYPEALIGN(8, sizeof(FeatureValue) + sizeof(float) * (max_mf_dim_ + 1));
    grad_type_size_ =
        TYPEALIGN(8, sizeof(FeaturePushValue) + (max_mf_dim_ * sizeof(float)));
  }

T
Thunderbrook 已提交
330 331
  void ShowOneTable(int index) { HeterPs_->show_one_table(index); }

T
Thunderbrook 已提交
332 333 334 335 336 337 338 339 340 341 342 343
  int UseAfsApi() { return use_afs_api_; }

#ifdef PADDLE_WITH_PSLIB
  std::shared_ptr<paddle::ps::AfsReader> OpenReader(
      const std::string& filename) {
    return afs_handler_.open_reader(filename);
  }

  void InitAfsApi(const std::string& fs_name, const std::string& fs_user,
                  const std::string& pass_wd, const std::string& conf);
#endif

T
Thunderbrook 已提交
344 345
 private:
  static std::shared_ptr<PSGPUWrapper> s_instance_;
Y
yaoxuefeng 已提交
346
  Dataset* dataset_;
T
Thunderbrook 已提交
347 348 349
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::AfsApiWrapper afs_handler_;
#endif
T
Thunderbrook 已提交
350 351 352 353 354 355 356 357
  std::unordered_map<
      uint64_t, std::vector<std::unordered_map<uint64_t, std::vector<float>>>>
      local_tables_;
  HeterPsBase* HeterPs_;
  std::vector<LoDTensor> keys_tensor;  // Cache for pull_sparse
  std::shared_ptr<HeterPsResource> resource_;
  int32_t sleep_seconds_before_fail_exit_;
  std::vector<int> slot_vector_;
Y
yaoxuefeng 已提交
358 359 360 361 362 363 364 365 366
  std::vector<int> slot_offset_vector_;
  std::vector<int> slot_mf_dim_vector_;
  std::unordered_map<int, int> slot_dim_map_;
  std::vector<int> slot_index_vec_;
  std::vector<int> index_dim_vec_;
  int multi_mf_dim_{0};
  int max_mf_dim_{0};
  size_t val_type_size_{0};
  size_t grad_type_size_{0};
T
Thunderbrook 已提交
367
  int multi_node_{0};
368
  int node_size_;
369
  uint64_t table_id_;
370 371 372
  std::vector<ncclComm_t> inner_comms_;
  std::vector<ncclComm_t> inter_comms_;
  std::vector<ncclUniqueId> inter_ncclids_;
Y
yaoxuefeng 已提交
373 374 375
  std::vector<int> heter_devices_;
  std::unordered_set<std::string> gpu_ps_config_keys_;
  HeterObjectPool<HeterContext> gpu_task_pool_;
376
  std::vector<std::vector<robin_hood::unordered_set<uint64_t>>> thread_keys_;
377 378
  std::vector<std::vector<std::vector<robin_hood::unordered_set<uint64_t>>>>
      thread_dim_keys_;
Y
yaoxuefeng 已提交
379 380 381
  int thread_keys_thread_num_ = 37;
  int thread_keys_shard_num_ = 37;
  uint64_t max_fea_num_per_pass_ = 5000000000;
382 383 384
  int year_;
  int month_;
  int day_;
T
Thunderbrook 已提交
385
  int use_afs_api_ = 0;
T
Thunderbrook 已提交
386

Y
yaoxuefeng 已提交
387 388 389 390
  std::vector<MemoryPool*> mem_pools_;
  std::vector<HBMMemoryPool*> hbm_pools_;  // in multi mfdim, one table need hbm
                                           // pools of totol dims number

391 392 393 394 395 396 397 398 399 400 401 402 403
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      data_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      buildcpu_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      gpu_free_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<HeterContext> current_task_ = nullptr;
404
  std::thread pre_build_threads_;
405
  bool running_ = false;
T
Thunderbrook 已提交
406
  std::vector<std::shared_ptr<ThreadPool>> hbm_thread_pool_;
407

T
Thunderbrook 已提交
408 409 410 411 412 413 414
 protected:
  static bool is_initialized_;
};

}  // end namespace framework
}  // end namespace paddle
#endif