batch_sampler.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import numpy as np
19 20
import math

21
from .sampler import Sampler, SequenceSampler, RandomSampler
22
from .dataset import Dataset, IterableDataset
23

24
__all__ = ["BatchSampler", "DistributedBatchSampler"]
25 26


27
class BatchSampler(Sampler):
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    """
    A base implement of batch sampler used by `paddle.io.DataLoader`
    which yield mini-batch indices(a list/tuple with length as
    mini-batch size and holds sample indices) iterably.

    Batch sampler used by :code:`paddle.io.DataLoader` should be a subclass
    of :code:`paddle.io.BatchSampler`, BatchSampler subclasses should
    implement following methods:

    :code:`__iter__`: return mini-batch indices iterably.

    :code:`__len__`: get mini-batch number in an epoch.


    Args:
        dataset(Dataset): this could be a :code:`paddle.io.Dataset` 
                implement or other python object which implemented
                :code:`__len__` for BatchSampler to get indices as the
                range of :attr:`dataset` length. Default None.
47 48 49 50 51
        sampler (Sampler): this could be a :code:`paddle.io.Dataset`
                instance which implemented :code:`__iter__` to yield
                sample indices. :attr:`sampler` and :attr:`dataset`
                can not be set in the same time.  If :attr:`sampler`
                is set, :attr:`shuffle` should not be set. Default None.
52 53 54 55 56 57 58 59 60 61 62 63 64
        shuffle(bool): whether to shuffle indices order before genrating
                batch indices. Default False.
        batch_size(int): sample indice number in a mini-batch indices.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size. Default False

    Returns:
        BatchSampler: an iterable object for indices iterating

    Examples:
        
        .. code-block:: python
            
65
            from paddle.io import RandomSampler, BatchSampler, Dataset
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

            # init with dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
                
                def __len__(self):
                    return self.num_samples
            
            bs = BatchSampler(dataset=RandomDataset(100),
                              shuffle=False,
                              batch_size=16,
                              drop_last=False)

            for batch_indices in bs:
                print(batch_indices)

88 89 90 91 92 93 94 95 96 97
            # init with sampler
            sampler = RandomSampler(RandomDataset(100))
            bs = BatchSampler(sampler=sampler,
                              batch_size=8,
                              drop_last=True)

            for batch_indices in bs:
                print(batch_indices)


98 99 100 101 102 103
    see `paddle.io.DataLoader`

    """

    def __init__(self,
                 dataset=None,
104
                 sampler=None,
105 106 107 108
                 shuffle=False,
                 batch_size=1,
                 drop_last=False):
        if dataset is None:
109 110 111 112 113 114
            assert sampler is not None, \
                "either dataset or sampler should be set"
            assert isinstance(sampler, Sampler), \
                "sampler should be a paddle.io.Sampler, but got {}".format(type(sampler))
            assert not shuffle, "shuffle should be False when sampler is set"
            self.sampler = sampler
115
        else:
116 117 118 119
            assert not isinstance(dataset, IterableDataset), \
                "dataset should not be a paddle.io.IterableDataset"
            assert sampler is None, \
                "should not set both dataset and sampler"
120 121 122 123 124 125
            assert isinstance(shuffle, bool), \
                "shuffle should be a boolean value, but got {}".format(type(shuffle))
            if shuffle:
                self.sampler = RandomSampler(dataset)
            else:
                self.sampler = SequenceSampler(dataset)
126 127 128 129 130 131 132 133 134 135

        assert isinstance(batch_size, int) and batch_size > 0, \
            "batch_size should be a positive integer, but got {}".format(batch_size)
        self.batch_size = batch_size
        assert isinstance(drop_last, bool), \
            "drop_last should be a boolean value, but got {}".format(type(drop_last))
        self.drop_last = drop_last

    def __iter__(self):
        batch_indices = []
136
        for idx in self.sampler:
137 138 139 140 141 142 143 144
            batch_indices.append(idx)
            if len(batch_indices) == self.batch_size:
                yield batch_indices
                batch_indices = []
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices

    def __len__(self):
145
        num_samples = len(self.sampler)
146 147
        num_samples += int(not self.drop_last) * (self.batch_size - 1)
        return num_samples // self.batch_size
148 149 150 151 152 153 154 155 156 157 158 159 160


class _InfiniteIterableSampler(object):
    def __init__(self, dataset, batch_size=1):
        assert isinstance(
            dataset, IterableDataset
        ), "dataset should be an instance of paddle.io.IterableDataset"
        self.dataset = dataset
        self.batch_size = batch_size

    def __iter__(self):
        while True:
            yield [None] * self.batch_size
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180


class DistributedBatchSampler(BatchSampler):
    """Sampler that restricts data loading to a subset of the dataset.

    In such case, each process can pass a DistributedBatchSampler instance 
    as a DataLoader sampler, and load a subset of the original dataset that 
    is exclusive to it.

    .. note::
        Dataset is assumed to be of constant size.
        
    Args:
        dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
                     or other python object which implemented
                     `__len__` for BatchSampler to get sample
                     number of data source.
        batch_size(int): sample indice number in a mini-batch indices.
        num_replicas(int, optional): porcess number in distributed training.
            If :attr:`num_replicas` is None, :attr:`num_replicas` will be
181
            retrieved from :code:`paddle.distributed.ParallenEnv`.
182 183 184
            Default None.
        rank(int, optional): the rank of the current process among :attr:`num_replicas`
            processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
185
            :code:`paddle.distributed.ParallenEnv`. Default None.
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        shuffle(bool): whther to shuffle indices order before genrating
            batch indices. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size. Default False

    Examples:
        .. code-block:: python

            import numpy as np

            from paddle.io import Dataset, DistributedBatchSampler

            # init with dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
            
                def __getitem__(self, idx):
                    image = np.random.random([784]).astype('float32')
                    label = np.random.randint(0, 9, (1, )).astype('int64')
                    return image, label
                
                def __len__(self):
                    return self.num_samples
  
            dataset = RandomDataset(100)
            sampler = DistributedBatchSampler(dataset, batch_size=64)

            for data in sampler:
                # do something
                break
    """

    def __init__(self,
                 dataset,
                 batch_size,
                 num_replicas=None,
                 rank=None,
                 shuffle=False,
                 drop_last=False):
        self.dataset = dataset

        assert isinstance(batch_size, int) and batch_size > 0, \
                "batch_size should be a positive integer"
        self.batch_size = batch_size
        assert isinstance(shuffle, bool), \
                "shuffle should be a boolean value"
        self.shuffle = shuffle
        assert isinstance(drop_last, bool), \
                "drop_last should be a boolean number"

        from paddle.fluid.dygraph.parallel import ParallelEnv

        if num_replicas is not None:
            assert isinstance(num_replicas, int) and num_replicas > 0, \
                    "num_replicas should be a positive integer"
            self.nranks = num_replicas
        else:
            self.nranks = ParallelEnv().nranks

        if rank is not None:
            assert isinstance(rank, int) and rank >= 0, \
                    "rank should be a non-negative integer"
            self.local_rank = rank
        else:
            self.local_rank = ParallelEnv().local_rank

        self.drop_last = drop_last
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
        self.total_size = self.num_samples * self.nranks

    def __iter__(self):
        num_samples = len(self.dataset)
        indices = np.arange(num_samples).tolist()
        indices += indices[:(self.total_size - len(indices))]
        assert len(indices) == self.total_size
        if self.shuffle:
            np.random.RandomState(self.epoch).shuffle(indices)
            self.epoch += 1

        # subsample
        def _get_indices_by_batch_size(indices):
            subsampled_indices = []
            last_batch_size = self.total_size % (self.batch_size * self.nranks)
            assert last_batch_size % self.nranks == 0
            last_local_batch_size = last_batch_size // self.nranks

            for i in range(self.local_rank * self.batch_size,
                           len(indices) - last_batch_size,
                           self.batch_size * self.nranks):
                subsampled_indices.extend(indices[i:i + self.batch_size])

            indices = indices[len(indices) - last_batch_size:]
            subsampled_indices.extend(indices[
                self.local_rank * last_local_batch_size:(
                    self.local_rank + 1) * last_local_batch_size])
            return subsampled_indices

        if self.nranks > 1:
            indices = _get_indices_by_batch_size(indices)

        assert len(indices) == self.num_samples
        _sample_iter = iter(indices)

        batch_indices = []
        for idx in _sample_iter:
            batch_indices.append(idx)
            if len(batch_indices) == self.batch_size:
                yield batch_indices
                batch_indices = []
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices

    def __len__(self):
        num_samples = self.num_samples
        num_samples += int(not self.drop_last) * (self.batch_size - 1)
        return num_samples // self.batch_size

    def set_epoch(self, epoch):
        """
        Sets the epoch number. When :attr:`shuffle=True`, this number is used
        as seeds of random numbers. By default, users may not set this, all
        replicas (workers) use a different random ordering for each epoch.
        If set same number at each epoch, this sampler will yield the same
        ordering at all epoches.

        Arguments:
            epoch (int): Epoch number.

        Examples:
            .. code-block:: python
    
                import numpy as np
    
                from paddle.io import Dataset, DistributedBatchSampler
    
                # init with dataset
                class RandomDataset(Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
                
                    def __getitem__(self, idx):
                        image = np.random.random([784]).astype('float32')
                        label = np.random.randint(0, 9, (1, )).astype('int64')
                        return image, label
                    
                    def __len__(self):
                        return self.num_samples
      
                dataset = RandomDataset(100)
                sampler = DistributedBatchSampler(dataset, batch_size=64)
    
                for epoch in range(10):
                    sampler.set_epoch(epoch)
        """
        self.epoch = epoch